Магнитные наночастицы, полученные методом импульсной лазерной абляции тонких пленок кобальта в воде

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Показана возможность синтеза наночастиц методом импульсной лазерной абляции тонких пленок кобальта в воде. Средний размер формируемых наночастиц варьируется в диапазоне 70–1020 нм в зависимости от толщины аблируемой пленки. При толщинах пленок менее 35 нм дисперсия наночастиц по размерам минимальна. Полученные наночастицы характеризуются магнитным откликом и по своим структурным свойствам наиболее близко соответствуют оксиду кобальта Co3O4.

Полный текст

Доступ закрыт

Об авторах

И. О. Джунь

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына

Россия, Москва

В. Ю. Нестеров

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”; Федеральное государственное автономное образовательное учреждение высшего образования “Московский физико-технический институт (национальный исследовательский университет)”

Автор, ответственный за переписку.
Email: nesterovvy@my.msu.ru

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”, Физический факультет

Россия, Москва; Долгопрудный

Д. В. Шулейко

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Физический факультет

Россия, Москва

С. В. Заботнов

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Физический факультет

Россия, Москва

Д. Е. Преснов

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына

Россия, Москва

Ю. А. Алехина

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Физический факультет

Россия, Москва

Е. А. Константинова

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Физический факультет

Россия, Москва

Н. С. Перов

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Физический факультет

Россия, Москва

Н. Г. Чеченин

Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М. В. Ломоносова”

Email: nesterovvy@my.msu.ru

Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына; Физический факультет

Россия, Москва

Список литературы

  1. Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  2. Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
  3. Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
  4. Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
  5. Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
  6. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
  7. Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
  8. Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
  9. Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
  10. Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
  11. Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
  12. Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
  13. Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
  14. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
  15. Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
  16. Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
  17. Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
  18. Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
  19. Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
  20. Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
  21. Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
  22. Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
  23. Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
  24. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
  25. Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
  26. Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
  27. Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
  28. Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
  29. Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
  30. Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
  31. Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
  32. Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
  33. Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
  34. Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
  35. Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
  36. Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
  37. Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
  38. Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
  39. Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
  40. Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
  41. Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
  42. Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
  43. Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
  44. Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
  45. Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
  46. Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
  47. Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
  48. Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
  49. Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
  50. Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
  51. Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
  52. Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
  53. Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
  54. Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
  55. Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
  56. Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
  57. Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
  58. Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Фотографии пробирки объемом 1.5 мл с коллоидным раствором МНЧ, изготовленным методом лазерной абляции пленки Co толщиной 500 нм, в (а) в отсутствие и (б) присутствии магнитного поля. Цилиндрические шайбы – постоянные магниты.

Скачать (147KB)
3. Рис. 2. РЭМ-микрофотографии МНЧ, изготовленных методом лазерной абляции пленок Co толщиной 250 нм (а), (б) при различных увеличениях различных областей осажденных частиц.

Скачать (230KB)
4. Рис. 3. Петля гистерезиса (а) и спектр ЭПР (б) для МНЧ, полученных при ИЛА пленки кобальта толщиной 500 нм.

Скачать (149KB)
5. Рис. 4. Зависимости (а) среднего размера D и (б) стандартного среднеквадратичного отклонения размеров σ изготовленных МНЧ от толщины t используемой в качестве мишени для абляции пленки Co. Зависимости получены на основании данных ДРС в коллоидных растворах МНЧ.

Скачать (124KB)
6. Рис. 5. Спектры КРС образцов: 1 – исходная пленка Co толщиной 250 нм до облучения; 2 – подложка после ИЛА пленки Co толщиной 35 нм; 3 – МНЧ, полученных в результате ИЛА пленки Co толщиной 150 нм; 4 – спектр КРС для Co3O4 [55]. ν – волновое число, I – интенсивность стоксовой компоненты сигнала КРС.

Скачать (111KB)

© Российская академия наук, 2024