Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles

Texto integral

Acesso é fechado

Sobre autores

I. Dzhun

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, Moscow, 119991

V. Nesterov

Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: nesterovvy@my.msu.ru

Lomonosov Moscow State University, Faculty of Physics

Rússia, Moscow, 119991; Dolgoprudny, 141701

D. Shuleiko

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Rússia, Moscow, 119991

S. Zabotnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Rússia, Moscow, 119991

D. Presnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, Moscow, 119991

Yu. Alekhina

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Rússia, Moscow, 119991

E. Konstantinova

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Rússia, Moscow, 119991

N. Perov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Rússia, Moscow, 119991

N. Chechenin

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics; Faculty of Physics

Rússia, Moscow, 119991

Bibliografia

  1. Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  2. Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
  3. Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
  4. Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
  5. Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
  6. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
  7. Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
  8. Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
  9. Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
  10. Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
  11. Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
  12. Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
  13. Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
  14. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
  15. Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
  16. Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
  17. Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
  18. Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
  19. Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
  20. Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
  21. Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
  22. Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
  23. Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
  24. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
  25. Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
  26. Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
  27. Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
  28. Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
  29. Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
  30. Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
  31. Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
  32. Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
  33. Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
  34. Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
  35. Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
  36. Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
  37. Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
  38. Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
  39. Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
  40. Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
  41. Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
  42. Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
  43. Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
  44. Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
  45. Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
  46. Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
  47. Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
  48. Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
  49. Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
  50. Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
  51. Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
  52. Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
  53. Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
  54. Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
  55. Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
  56. Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
  57. Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
  58. Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Photographs of a 1.5 ml test tube with a colloidal solution of MNPs, produced by laser ablation of a 500 nm thick Co film, in (a) the absence and (b) the presence of a magnetic field. Cylindrical washers are permanent magnets.

Baixar (147KB)
3. Fig. 2. SEM micrographs of MNPs produced by laser ablation of 250 nm thick Co films (a), (b) at different magnifications of different areas of the deposited particles.

Baixar (230KB)
4. Fig. 3. Hysteresis loop (a) and EPR spectrum (b) for MNPs obtained by PLA of a 500 nm thick cobalt film.

Baixar (149KB)
5. Fig. 4. Dependences (a) of the average size D and (b) of the standard root-mean-square deviation of the sizes σ of the manufactured MNPs on the thickness t of the Co film used as a target for ablation. The dependences were obtained on the basis of DLS data in colloidal solutions of MNPs.

Baixar (124KB)
6. Fig. 5. Raman spectra of the samples: 1 – initial 250 nm thick Co film before irradiation; 2 – substrate after PLA of 35 nm thick Co film; 3 – MNPs obtained as a result of PLA of 150 nm thick Co film; 4 – Raman spectrum for Co3O4 [55]. ν – wave number, I – intensity of the Stokes component of the Raman signal.

Baixar (111KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024