Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles

Full Text

Restricted Access

About the authors

I. O. Dzhun

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

V. Y. Nesterov

Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Author for correspondence.
Email: nesterovvy@my.msu.ru

Lomonosov Moscow State University, Faculty of Physics

Russian Federation, Moscow, 119991; Dolgoprudny, 141701

D. V. Shuleiko

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

S. V. Zabotnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

D. Е. Presnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

Yu. A. Alekhina

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

E. A. Konstantinova

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

N. S. Perov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

N. G. Chechenin

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics; Faculty of Physics

Russian Federation, Moscow, 119991

References

  1. Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  2. Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
  3. Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
  4. Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
  5. Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
  6. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
  7. Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
  8. Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
  9. Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
  10. Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
  11. Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
  12. Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
  13. Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
  14. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
  15. Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
  16. Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
  17. Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
  18. Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
  19. Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
  20. Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
  21. Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
  22. Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
  23. Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
  24. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
  25. Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
  26. Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
  27. Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
  28. Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
  29. Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
  30. Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
  31. Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
  32. Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
  33. Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
  34. Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
  35. Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
  36. Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
  37. Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
  38. Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
  39. Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
  40. Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
  41. Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
  42. Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
  43. Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
  44. Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
  45. Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
  46. Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
  47. Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
  48. Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
  49. Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
  50. Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
  51. Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
  52. Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
  53. Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
  54. Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
  55. Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
  56. Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
  57. Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
  58. Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photographs of a 1.5 ml test tube with a colloidal solution of MNPs, produced by laser ablation of a 500 nm thick Co film, in (a) the absence and (b) the presence of a magnetic field. Cylindrical washers are permanent magnets.

Download (147KB)
3. Fig. 2. SEM micrographs of MNPs produced by laser ablation of 250 nm thick Co films (a), (b) at different magnifications of different areas of the deposited particles.

Download (230KB)
4. Fig. 3. Hysteresis loop (a) and EPR spectrum (b) for MNPs obtained by PLA of a 500 nm thick cobalt film.

Download (149KB)
5. Fig. 4. Dependences (a) of the average size D and (b) of the standard root-mean-square deviation of the sizes σ of the manufactured MNPs on the thickness t of the Co film used as a target for ablation. The dependences were obtained on the basis of DLS data in colloidal solutions of MNPs.

Download (124KB)
6. Fig. 5. Raman spectra of the samples: 1 – initial 250 nm thick Co film before irradiation; 2 – substrate after PLA of 35 nm thick Co film; 3 – MNPs obtained as a result of PLA of 150 nm thick Co film; 4 – Raman spectrum for Co3O4 [55]. ν – wave number, I – intensity of the Stokes component of the Raman signal.

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences