Effect of Characteristics of Polymer Microgel Catalysts on the Efficiency of Interfacial Catalysis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Effect of the architecture and composition of a hydrophilic microgel catalyst on the rate of interfacial catalytic reaction proceeding at the water/oil interface and involving reagents dissolved in opposite phases is studied using dissipative particle dynamics simulations. It is shown that a decrease in the crosslinking density of the microgel, the existence of a cavity in its architecture, an increase in its size, the incorporation the hydrophobic comonomers into a macromolecule, and a rise in the degree of solubility of a network macromolecule in oil contribute to acceleration of the catalytic reaction due to increase of the area of the water–oil–microgel contact and growth of the number of contacts between reagents and catalytic groups. However, in the case of amphiphilic microgels and microgels soluble in both phases, the acceleration of the reaction is restrained by a low rate of reagents diffusion and a rapid reduction in the concentration of reagents in the vicinity of catalytic sites.

Авторлар туралы

M. Anakhov

Faculty of Physics, Moscow State University

Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

R. Gumerov

Faculty of Physics, Moscow State University

Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

I. Potemkin

Faculty of Physics, Moscow State University

Хат алмасуға жауапты Автор.
Email: igor@polly.phys.msu.ru
119991, Moscow, Russia

Әдебиет тізімі

  1. Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., Richtering W. // Langmuir. 2019. V. 35. № 19. P. 6231.
  2. Anakhov M.V., Gumerov R.A., Potemkin I.I. // Mendeleev Commun. 2020. V. 30. № 5. P. 555.
  3. Richtering W. // Langmuir. 2012. V. 28. № 50. P. 17218.
  4. Li Z., Ngai T. // Nanoscale. 2013. V. 5. № 4. P. 1399.
  5. Wechsler M.E., Stephenson R.E., Murphy A.C., Oldenkamp H.F., Singh A., Peppas N.A. // Biomed. Microdevices. 2019. V. 21. № 2. P. 31.
  6. Dirksen M., Dargel C., Meier L., Brändel T., Hellweg T. // Colloid Polym. Sci. 2020. V. 298. № 6. P. 505.
  7. Van Tran V., Park D., Lee Y.C. // Environ. Sci. Pollut. Res. 2018. V. 25. № 25. P. 24569.
  8. Naseem K., Hussain Farooqi Z., Zia Ur Rehman M., Atiq Ur Rehman M., Ghufran M. // Rev. Chem. Eng. 2019. V. 35. № 2. P. 285.
  9. Kozhunova E.Y., Komarova G.A., Anakhov M.V., Gumerov R.A., Potemkin I.I. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 51. P. 57244.
  10. Wiese S., Spiess A.C., Richtering W. // Angew. Chem. Int. Ed. 2013. V. 52. № 2. P. 576.
  11. Ajmal M., Demirci S., Siddiq M., Aktas N., Sahiner N. // New J. Chem. 2016. V. 40. № 2. P. 1485.
  12. Shah L.A., Haleem A., Sayed M., Siddiq M. // J. Environ. Chem. Eng. 2016. V. 4. № 3. P. 3492.
  13. Borrmann R., Palchyk V., Pich A., Rueping M. // ACS Catal. 2018. V. 8. № 9. P. 7991.
  14. Tan K.H., Xu W., Stefka S., Demco D.E., Kharandiuk T., Ivasiv V., Nebesnyi R., Petrovskii V.S., Potemkin I.I., Pich A. // Angew. Chemie Int. Ed. 2019. V. 58. № 29. P. 9791.
  15. Kleinschmidt D., Fernandes M.S., Mork M., Meyer A.A., Krischel J., Anakhov M.V., Gumerov R.A., Potemkin I.I., Rueping M., Pich A. // J. Colloid Interface Sci. 2020. V. 559. P. 76.
  16. Kleinschmidt D., Nothdurft K., Anakhov M.V., Meyer A.A., Mork M., Gumerov R.A., Potemkin I.I., Richtering W., Pich A. // Mater. Adv. 2020. V. 1. № 8. P. 2983.
  17. Sabadasch V., Dirksen M., Fandrich P., Cremer J., Biere N., Anselmetti D., Hellweg T. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 43. P. 49181.
  18. Dubey N.C., Gaur D., Tripathi B.P. // J. Polym. Sci. 2023.
  19. Gumerov R.A., Rumyantsev A.M., Rudov A.A., Pich A., Richtering W., Möller M., Potemkin I.I. // ACS Macro Lett. 2016. V. 5. № 5. P. 612.
  20. Bochenek S., Camerin F., Zaccarelli E., Maestro A., Schmidt M.M., Richtering W., Scotti A. // Nat. Commun. 2022. V. 13. № 1. P. 3744.
  21. Gumerov R.A., Filippov S.A., Richtering W., Pich A., Potemkin I.I. // Soft Matter. 2019. V. 15. № 19. P. 3978.
  22. Gumerov R.A., Anakhov M.V., Potemkin I.I. // Dokl. Chem. 2023. accepted.
  23. Hoogerbrugge P.J., Koelman J.M.V.A. // Europhys. Lett. 1992. V. 19. № 3. P. 155.
  24. Español P., Warren P. // Europhys. Lett. 1995. V. 30. № 4. P. 191.
  25. Groot R.D., Warren P.B. // J. Chem. Phys. 1997. V. 107. № 11. P. 4423.
  26. Biglione C., Neumann-Tran T.M.P., Kanwal S., Klinger D. // J. Polym. Sci. 2021. V. 59. № 22. P. 2665.
  27. Goicochea A.G., Romero-Bastida M., López-Rendón R. // Mol. Phys. 2007. V. 105. № 17–18. P. 2375.
  28. Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., in ’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171.
  29. Wang H. // Catalysts. 2019. V. 9. № 3. P. 244.
  30. Kaneko S., Kumatabara Y., Shirakawa S. // Org. Biomol. Chem. 2016. V. 14. № 24. P. 5367.
  31. Vianello C., Piccolo D., Lorenzetti A., Salzano E., Maschio G. // Ind. Eng. Chem. Res. 2018. V. 57. № 34. P. 11517.
  32. Schmidt F., Cokoja M. // Green Chem. 2021. V. 23. № 2. P. 708.
  33. Stukowski A. // JOM. 2014. V. 66. № 3. P. 399.
  34. Nayak S., Gan D., Serpe M.J., Lyon L.A. // Small. 2005. V. 1. № 4. P. 416.
  35. Geisel K., Rudov A.A., Potemkin I.I., Richtering W. // Langmuir. 2015. V. 31. № 48. P. 13145.
  36. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Y., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innov. 2019. V. 6. № 2. P. 4.

© М.В. Анахов, Р.А. Гумеров, И.И. Потемкин, 2023