Pharmacodynamics Research on Danggui-Shaoyao-San through Body Fluid Indexes of Spleen Deficiency-water Dampness Rats using Bio-impedance Technology


Cite item

Full Text

Abstract

Background::Spleen deficiency-water dampness symptom is closely related to body fluid-mediated organism metabolism and circulation. However, previous clinical evaluation of spleen deficiency-water dampness model was based only on body weight, D-xylose excretion rate, serum gastrin content, etc. Therefore, we established a large sample of normal rats and model rats experiment to verify the scientific nature of bio-impedance measuring body fluid indexes for evaluation of the modeling state. Pharmacodynamics research on Danggui-Shaoyao- San (DSS) was conducted through body fluid index changes of rats using bio-impedance technology.

Methods::A spleen deficiency-water dampness symptom rat model was established through an inappropriate diet combined with excess fatigue. Experimental rats were divided into a normal control group, a model control group, a positive drug control group (hydrochlorothiazide), a blood-activating group, a water-disinhibiting group, and a DSS group. Total Body Water/Body Weight (TBW%), extracellular fluid/total body water content (ECF%), intracellular fluid/total body water content (ICF%), extracellular fluid/intracellular fluid (ECF/ICF), fat mass/body weight (FM%), fat-free mass/body weight (FFM%), and fat mass/fat-free mass (FM/FFM) of 150 rats were detected by a Bio-Imp Vet Body analyzer.

Results::The TBW% of the model control group increased significantly, and the FM/FFM was significantly reduced compared with the normal group (p < 0.05) (p < 0.01), showing symptoms of spleen deficiency and diarrhea; the TBW% of the blood-activating group, and the waterdisinhibiting group decreased significantly, and the FM/FFM increased significantly (p < 0.05) (p < 0.01). The TBW% and FM/FFM in the water-disinhibiting group had returned to nearnormal values compared with the model control group. The blood-activating and waterdisinhibiting split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats. Comparatively, the fluid-regulating effect of split prescriptions in DSS was even stronger than that of DSS as shown in the present study.

Conclusions::These findings suggest that using bio-impedance technology to measure body fluid indexes can pave a road for further exploring the molecular mechanism of the reason why the blood-activating and disinhibit-water split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats.

About the authors

Ran Chen

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Email: info@benthamscience.net

Mo Yang

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Email: info@benthamscience.net

Can Peng

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Email: info@benthamscience.net

Dengke Yin

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yunjing Zhang

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Fan Xu

School of Pharmacy, Anhui University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys., 2008, 30(10), 1257-1269. doi: 10.1016/j.medengphy.2008.06.009 PMID: 18676172
  2. Cerdó, T.; García-Santos, J.A.G.; Bermúdez, M.; Campoy, C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients, 2019, 11(3), 635. doi: 10.3390/nu11030635 PMID: 30875987
  3. Sandini, M.; Paiella, S.; Cereda, M.; Angrisani, M.; Capretti, G.; Casciani, F.; Famularo, S.; Giani, A.; Roccamatisi, L.; Viviani, E.; Caccialanza, R.; Montorsi, M.; Zerbi, A.; Bassi, C.; Gianotti, L. Perioperative interstitial fluid expansion predicts major morbidity following pancreatic surgery. Ann. Surg., 2019, 270(5), 923-929. doi: 10.1097/SLA.0000000000003536 PMID: 31592889
  4. Buffa, R.; Mereu, E.; Comandini, O.; Ibanez, M.E.; Marini, E. Bioelectrical impedance vector analysis (BIVA) for the assessment of two-compartment body composition. Eur. J. Clin. Nutr., 2014, 68(11), 1234-1240. doi: 10.1038/ejcn.2014.170 PMID: 25139557
  5. Ward, L.C. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr., 2019, 73(2), 194-199. doi: 10.1038/s41430-018-0335-3 PMID: 30297760
  6. Schork, A.; Saynisch, J.; Vosseler, A.; Jaghutriz, B.A.; Heyne, N.; Peter, A.; Häring, H.U.; Stefan, N.; Fritsche, A.; Artunc, F. Effect of SGLT2 inhibitors on body composition, fluid status and renin–angiotensin–aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol., 2019, 18(1), 46. doi: 10.1186/s12933-019-0852-y PMID: 30953516
  7. Nishikawa, H.; Yoh, K.; Enomoto, H.; Ishii, N.; Iwata, Y.; Nakano, C.; Takata, R.; Nishimura, T.; Aizawa, N.; Sakai, Y.; Ikeda, N.; Hasegawa, K.; Takashima, T.; Iijima, H.; Nishiguchi, S. Extracellular water to total body water ratio in viral liver diseases: A study using bioimpedance analysis. Nutrients, 2018, 10(8), 1072. doi: 10.3390/nu10081072 PMID: 30103528
  8. Bayford, R.; Tizzard, A. Bioimpedance imaging: An overview of potential clinical applications. Analyst, 2012, 137(20), 4635-4643. doi: 10.1039/c2an35874c PMID: 22930423
  9. Slee, A.; Birch, D.; Stokoe, D. Bioelectrical impedance vector analysis, phase-angle assessment and relationship with malnutrition risk in a cohort of frail older hospital patients in the United Kingdom. Nutrition, 2015, 31(1), 132-137. doi: 10.1016/j.nut.2014.06.002 PMID: 25466657
  10. Chong, J.U.; Nam, S.; Kim, H.J.; Lee, R.; Choi, Y.; Lee, J.G.; Kim, K.S. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J. Gastrointest. Surg., 2016, 20(5), 1020-1027. doi: 10.1007/s11605-015-3063-1 PMID: 26715560
  11. Yang, C.W.; Harris, D.C.H.; Luyckx, V.A.; Nangaku, M.; Hou, F.F.; Garcia Garcia, G.; Abu-Aisha, H.; Niang, A.; Sola, L.; Bunnag, S.; Eiam-Ong, S.; Tungsanga, K.; Richards, M.; Richards, N.; Goh, B.L.; Dreyer, G.; Evans, R.; Mzingajira, H.; Twahir, A.; McCulloch, M.I.; Ahn, C.; Osafo, C.; Hsu, H.H.; Barnieh, L.; Donner, J.A.; Tonelli, M. Global case studies for chronic kidney disease/end-stage kidney disease care. Kidney Int. Suppl., 2020, 10(1), e24-e48. doi: 10.1016/j.kisu.2019.11.010 PMID: 32149007
  12. Ketteler, M.; Elder, G.J.; Evenepoel, P.; Ix, J.H.; Jamal, S.A.; Lafage-Proust, M.H.; Shroff, R.; Thadhani, R.I.; Tonelli, M.A.; Kasiske, B.L.; Wheeler, D.C.; Leonard, M.B. Revisiting KDIGO clinical practice guideline on chronic kidney disease—mineral and bone disorder: A commentary from a Kidney Disease: Improving Global Outcomes controversies conference. Kidney Int., 2015, 87(3), 502-508. doi: 10.1038/ki.2014.425 PMID: 25651364
  13. Lin, C.C.; Hwang, S.J. Patient-centered self-management in patients with chronic kidney disease: Challenges and implications. Int. J. Environ. Res. Public Health, 2020, 17(24), 9443. doi: 10.3390/ijerph17249443 PMID: 33339300
  14. Su, S.B.; Poon, T.C.; Thongboonkerd, V. Human body fluid. BioMed Res. Int., 2013, 2013(8), 918793. PMID: 24083249
  15. Oppelaar, J.J.; Vogt, L. Body fluid-independent effects of dietary salt consumption in chronic kidney disease. Nutrients, 2019, 11(11), 2779. doi: 10.3390/nu11112779 PMID: 31731658
  16. Bie, P.; Evans, R.G. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol., 2017, 219(1), 288-304. doi: 10.1111/apha.12718 PMID: 27214656
  17. Gao, X.S.; Pan, J.; Pang, R.; Liu, B.; Song, S.Q. Mechanism of Huayu Jianpi Fangshi decoction in urolithiasis prevention: A randomized trial. Ann. Palliat. Med., 2021, 10(4), 4320-4327. doi: 10.21037/apm-20-2295 PMID: 33832307
  18. Hu, S.Y.; Zhou, Y.; Tao, C.L.; Song, X.; Wang, Y.L. HPLC-DAD fingerprint of danggui-shaoyao-san and its synergy. Zhongguo Yaoke Daxue Xuebao, 2014, 45(2), 205-209.
  19. Guillaumin, J.; DiBartola, S.P. Disorders of sodium and water homeostasis. Vet. Clin. North Am. Small Anim. Pract., 2017, 47(2), 293-312. doi: 10.1016/j.cvsm.2016.10.015 PMID: 28017410
  20. Vermeiren, E.; Ysebaert, M.; Van Hoorenbeeck, K.; Bruyndonckx, L.; Van Dessel, K.; Van Helvoirt, M.; De Guchtenaere, A.; De Winter, B.; Verhulst, S.; Van Eyck, A. Comparison of bioimpedance spectroscopy and dual energy X-ray absorptiometry for assessing body composition changes in obese children during weight loss. Eur. J. Clin. Nutr., 2021, 75(1), 73-84. doi: 10.1038/s41430-020-00738-9 PMID: 32917962
  21. McMahon, E.J.; Campbell, K.L.; Bauer, J.D.; Mudge, D.W.; Kelly, J.T. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst. Rev., 2021, 6(6), CD010070. Review PMID: 34164803
  22. Bonaccorsi, G.; Santomauro, F.; Lorini, C.; Indiani, L.; Pellegrino, E.; Pasquini, G.; Molino-Lova, R.; Epifani, F.; Macchi, C. Risk of malnutrition in a sample of nonagenarians: Specific versus classic bioelectrical impedance vector analysis. Nutrition, 2016, 32(3), 368-374. doi: 10.1016/j.nut.2015.09.011 PMID: 26724959
  23. Arafa, M.F.; El-Gizawy, S.A.; Osman, M.A.; El Maghraby, G.M. Sucralose as co-crystal co-former for hydrochlorothiazide: Development of oral disintegrating tablets. Drug Dev. Ind. Pharm., 2016, 42(8), 1225-1233. doi: 10.3109/03639045.2015.1118495 PMID: 26555927
  24. Thabet, Y.; Lunter, D.; Breitkreutz, J. Continuous manufacturing and analytical characterization of fixed-dose, multilayer orodispersible films. Eur. J. Pharm. Sci., 2018, 117, 236-244. doi: 10.1016/j.ejps.2018.02.030 PMID: 29499348
  25. Ono, A.; Sugano, K. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations. Eur. J. Pharm. Sci., 2014, 64, 37-43. doi: 10.1016/j.ejps.2014.08.003 PMID: 25151946
  26. Koh, S.K.; Jeong, J.W.; Choi, S.I.; Kim, R.M.; Koo, T.S.; Cho, K.H.; Seo, K.W. Pharmacokinetics and diuretic effect of furosemide after single intravenous, oral tablet, and newly developed oral disintegrating film administration in healthy beagle dogs. BMC Vet. Res., 2021, 17(1), 295. doi: 10.1186/s12917-021-02998-4 PMID: 34488750
  27. Grube, A.; Gerlitzki, C.; Brendel, M. Dissolution or disintegration – substitution of dissolution by disintegration testing for a fixed dose combination product. Drug Dev. Ind. Pharm., 2019, 45(1), 130-138. doi: 10.1080/03639045.2018.1526184 PMID: 30230388
  28. Wang, Y.; Fan, S.; Yang, M.; Shi, G.; Hu, S.; Yin, D.; Zhang, Y.; Xu, F. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches. J. Ethnopharmacol., 2020, 261, 113020. doi: 10.1016/j.jep.2020.113020 PMID: 32592886
  29. Chapman, M.E.; Hu, L.; Plato, C.F.; Kohan, D.E. Bioimpedance spectroscopy for the estimation of body fluid volumes in mice. Am. J. Physiol. Renal Physiol., 2010, 299(1), F280-F283. doi: 10.1152/ajprenal.00113.2010 PMID: 20462974
  30. Kim, E.J.; Choi, M.J.; Lee, J.H.; Oh, J.E.; Seo, J.W.; Lee, Y.K.; Yoon, J.W.; Kim, H.J.; Noh, J.W.; Koo, J.R. Extracellular fluid/intracellular fluid volume ratio as a novel risk indicator for all-cause mortality and cardiovascular disease in hemodialysis patients. PLoS One, 2017, 12(1), e0170272. doi: 10.1371/journal.pone.0170272 PMID: 28099511
  31. Gordon, C.J.; Phillips, P.M.; Johnstone, A.F.M. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance. Am. J. Physiol. Renal Physiol., 2016, 310(5), F426-F431. doi: 10.1152/ajprenal.00405.2015 PMID: 26697983
  32. Matthie, J.R. Bioimpedance measurements of human body composition: Critical analysis and outlook. Expert Rev. Med. Devices, 2008, 5(2), 239-261. doi: 10.1586/17434440.5.2.239 PMID: 18331184
  33. Aubertin, G.; Sayeh, A.; Dillenseger, J.P.; Ayme-Dietrich, E.; Choquet, P.; Niederhoffer, N. Comparison of bioimpedance spectroscopy and X-Ray micro-computed tomography for total fat volume measurement in mice. PLoS One, 2017, 12(8), e0183523. doi: 10.1371/journal.pone.0183523 PMID: 28817729
  34. Bellizzi, V.; Scalfi, L.; Terracciano, V.; De Nicola, L.; Minutolo, R.; Marra, M.; Guida, B.; Cianciaruso, B.; Conte, G.; Di Iorio, B.R. Early changes in bioelectrical estimates of body composition in chronic kidney disease. J. Am. Soc. Nephrol., 2006, 17(5), 1481-1487. doi: 10.1681/ASN.2005070756 PMID: 16611719
  35. Yajima, T.; Yajima, K.; Takahashi, H.; Yasuda, K. Combined predictive value of extracellular fluid/intracellular fluid ratio and the geriatric nutritional risk index for mortality in patients undergoing hemodialysis. Nutrients, 2019, 11(11), 2659. doi: 10.3390/nu11112659 PMID: 31690024
  36. Ohara, K.; Masuda, T.; Murakami, T.; Imai, T.; Yoshizawa, H.; Nakagawa, S. Effects of the SGLT2 inhibitor dapagliflozin on fluid distribution: A comparison study with furosemide and tolvaptan. Nephrology, 2019, 24(9), 904-911. doi: 10.1111/nep.13552 PMID: 30578654
  37. Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016, 73(23), 4397-4413. doi: 10.1007/s00018-016-2297-8 PMID: 27342992
  38. Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int., 1985, 27(1), 58-65. doi: 10.1038/ki.1985.10 PMID: 3981873
  39. Fekete, C.; Lechan, R.M. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: Role of neuronal afferents and type 2 deiodinase. Front. Neuroendocrinol., 2007, 28(2-3), 97-114. doi: 10.1016/j.yfrne.2007.04.002 PMID: 17588648
  40. Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.K.; Attar, N.; Sazegar, H.; Chodon, T.; Nelson, S.F.; McArthur, G.; Sosman, J.A.; Ribas, A.; Lo, R.S. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468(7326), 973-977. doi: 10.1038/nature09626 PMID: 21107323
  41. Guo, L.; Chen, H.; Li, Y.; Zhou, Q.; Sui, Y. An aquaporin 3-notch1 axis in keratinocyte differentiation and inflammation. PLoS One, 2013, 8(11), e80179. doi: 10.1371/journal.pone.0080179 PMID: 24260356
  42. Trajkovic, M.; Visser, T.J.; Mittag, J.; Horn, S.; Lukas, J.; Darras, V.M.; Raivich, G.; Bauer, K.; Heuer, H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J. Clin. Invest., 2007, 117(3), 627-635. doi: 10.1172/JCI28253 PMID: 17318265
  43. Amalia, R.I.; Davenport, A. Estimated dietary sodium intake in peritoneal dialysis patients using food frequency questionnaires and total urinary and peritoneal sodium losses and assessment of extracellular volumes. Eur. J. Clin. Nutr., 2019, 73(1), 105-111. doi: 10.1038/s41430-018-0259-y PMID: 30046131
  44. Gankam Kengne, F.; Decaux, G. Hyponatremia and the brain. Kidney Int. Rep., 2018, 3(1), 24-35. doi: 10.1016/j.ekir.2017.08.015 PMID: 29340311
  45. Cabassi, A.; Tedeschi, S. Severity of community acquired hypernatremia is an independent predictor of mortality: A matter of water balance and rate of correction. Intern. Emerg. Med., 2017, 12(7), 909-911. doi: 10.1007/s11739-017-1693-x PMID: 28669048
  46. Liu, M.; Wang, Y.; Liu, Y.; Ruan, R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res. Int., 2016, 89(Pt 1), 63-73. doi: 10.1016/j.foodres.2016.08.009 PMID: 28460959
  47. Yang, Z.; Xiang, T.; Zhang, S.; Zhan, H.; Chen, Z.; Sun, B.; Chen, X.; Shi, J.; Ren, B. Effect of polypeptide 2B1 on condition of dampness pattern in rats in terms of Traditional Chinese Medicine. J. Tradit. Chin. Med., 2014, 34(2), 214-220. doi: 10.1016/S0254-6272(14)60081-9 PMID: 24783936
  48. Collaco, A.M.; Jakab, R.L.; Hoekstra, N.E.; Mitchell, K.A.; Brooks, A.; Ameen, N.A. Regulated traffic of anion transporters in mammalian Brunner’s glands: A role for water and fluid transport. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 305(3), G258-G275. doi: 10.1152/ajpgi.00485.2012 PMID: 23744739
  49. Cadnapaphornchai, M.A.; Tkachenko, O.; Shchekochikhin, D.; Schrier, R.W. The nephrotic syndrome: pathogenesis and treatment of edema formation and secondary complications. Pediatr. Nephrol., 2014, 29(7), 1159-1167. doi: 10.1007/s00467-013-2567-8 PMID: 23989393
  50. Zhao, Y.H.; Tang, D.D.; Chen, D.Q.; Feng, Y.L.; Li, Q.F.; Li, P.F. Advances in the study of the chemical composition and mechanism of diuretics such as Poria, poria peel, polyporus and alisma. Zhongguo Yaolixue Yu Dulixue Zazhi, 2014, 28(4), 594-599.
  51. Yu, H.; Qi, P.J. Random parallel control study of Chinese medicine staging combined with western medicine to treat nephropathy syndrome. J Pract Tradit Chin Intern Med, 2016, 30(3), 63-65.
  52. German, A.J.; Holden, S.L.; Morris, P.J.; Biourge, V. Comparison of a bioimpedance monitor with dual-energy x-ray absorptiometry for noninvasive estimation of percentage body fat in dogs. Am. J. Vet. Res., 2010, 71(4), 393-398. doi: 10.2460/ajvr.71.4.393 PMID: 20367047
  53. Liu, X.; Li, X.; Ji, S.; Cui, X.; Li, M. Screening of bioactive ingredients in ligusticum chuanxiong hort for protection against myocardial ischemia. Cell. Physiol. Biochem., 2016, 40(3-4), 770-780. doi: 10.1159/000453137 PMID: 27915331
  54. Zhang, Q.; Zhao, Y.; Xu, Y.; Chen, Z.; Liu, N.; Ke, C.; Liu, B.; Wu, W. Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia. J. Transl. Med., 2016, 14(1), 223. doi: 10.1186/s12967-016-0979-5 PMID: 27465579
  55. Wang, K.; Zhang, B.; Song, D.; Xi, J.; Hao, W.; Yuan, J.; Gao, C.; Cui, Z.; Cheng, Z. Alisol A alleviates arterial plaque by activating ampk/sirt1 signaling pathway in apoe-deficient mice. Front. Pharmacol., 2020, 11, 580073. doi: 10.3389/fphar.2020.580073 PMID: 33224034
  56. Cao, Y.; Duan, J.; Guo, J.; Li, W.; Tao, W. Pharmacokinetic properties of arsenic species after oral administration of Sargassum pallidum extract in rats using an HPLC-HG-AFS method. J. Pharm. Biomed. Anal., 2014, 96, 213-219. doi: 10.1016/j.jpba.2014.03.045 PMID: 24763266
  57. Wang, A.X.; Ge, G.B.; Qi, X.Y.; Hu, Y.; Lin, L.; Lin, M. A preliminary study of the effective ingredients of Chinese medicine compound poria soup. China J Exp Tradit Med Formul, 2010, 16(11), 120-124.
  58. Ji, H.; Liu, Y.Y. A randomized parallel controlled study on the method of yiqiwenyang, activating Blood and diuresis staging combined with western medicine to treat dilated cardiomyopathy and heart failure. J Pract Tradit Chin Intern Med, 2013, 27(8), 96-98.
  59. Shimizu, M.; Ishikawa, S.; Yachi, Y.; Muraoka, M.; Tasaki, Y.; Iwasaki, H.; Kuroda, M.; Ohta, K.; Yachie, A. Tolvaptan therapy for massive edema in a patient with nephrotic syndrome. Pediatr. Nephrol., 2014, 29(5), 915-917. doi: 10.1007/s00467-013-2687-1 PMID: 24240509
  60. Wong, V.K.C.; Yu, L.; Cho, C.H. Protective effect of polysaccharides from Angelica sinensis on ulcerative colitis in rats. Inflammopharmacology, 2008, 16(4), 162-167. doi: 10.1007/s10787-007-0026-5 PMID: 18759074
  61. Tang, S.C.W.; Lam, B.; Lam, J.C.M.; Chan, C.K.; Chow, C.C.; Ho, Y.W.; Ip, M.S.M.; Lai, K.N. Impact of nephrotic edema of the lower limbs on obstructive sleep apnea: Gathering a unifying concept for the pathogenetic role of nocturnal rostral fluid shift. Nephrol. Dial. Transplant., 2012, 27(7), 2788-2794. doi: 10.1093/ndt/gfr759 PMID: 22248509
  62. Nalcacioglu, H.; Ozkaya, O.; Baysal, K.; Kafali, H.C.; Avci, B.; Tekcan, D.; Genc, G. The role of bioelectrical impedance analysis, NT-ProBNP and inferior vena cava sonography in the assessment of body fluid volume in children with nephrotic syndrome. Nefrologia, 2018, 38(1), 48-56. doi: 10.1016/j.nefroe.2017.12.001 PMID: 28751054
  63. Huang, L.; Ye, M.; Wu, J.; Liu, W.; Chen, H.; Rui, W. A metabonomics and lipidomics based network pharmacology study of qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1146, 122102. doi: 10.1016/j.jchromb.2020.122102 PMID: 32330807
  64. Li, Y.; Lei, X.; Yin, Z.; Guo, W.; Wu, S.; Yang, X. Transgenerational effects of paternal dietary Astragalus polysaccharides on spleen immunity of broilers. Int. J. Biol. Macromol., 2018, 115, 90-97. doi: 10.1016/j.ijbiomac.2018.04.009 PMID: 29626604
  65. Wang, K.; Wu, J.; Xu, J.; Gu, S.; Li, Q.; Cao, P.; Li, M.; Zhang, Y.; Zeng, F. Correction of anemia in chronic kidney disease with Angelica sinensis polysaccharide via restoring EPO production and improving iron availability. Front. Pharmacol., 2018, 9, 803. doi: 10.3389/fphar.2018.00803 PMID: 30108502
  66. Wang, C.; Greenbaum, L.A. Nephrotic syndrome. Pediatr. Clin. North Am., 2019, 66(1), 73-85. doi: 10.1016/j.pcl.2018.08.006 PMID: 30454752
  67. Hull, R.P.; Goldsmith, D.J.A. Nephrotic syndrome in adults. BMJ, 2008, 336(7654), 1185-1189. doi: 10.1136/bmj.39576.709711.80 PMID: 18497417
  68. Lee, H.W.; Jun, J.H.; Kil, K.J.; Ko, B.S.; Lee, C.H.; Lee, M.S. Herbal medicine (Danggui Shaoyao San) for treating primary dysmenorrhea: A systematic review and meta-analysis of randomized controlled trials. Maturitas, 2016, 85, 19-26. doi: 10.1016/j.maturitas.2015.11.013 PMID: 26857875
  69. Ohara, K.; Masuda, T.; Morinari, M.; Okada, M.; Miki, A.; Nakagawa, S.; Murakami, T.; Oka, K.; Asakura, M.; Miyazawa, Y.; Maeshima, A.; Akimoto, T.; Saito, O.; Nagata, D. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol. Metab. Syndr., 2020, 12(1), 37. doi: 10.1186/s13098-020-00545-z PMID: 32377235
  70. Cheng, M.; Feng, X.; Wang, L.; Yang, Y.; Ma, L.; Wang, B. Nucleoside analogs assisted with Chinese compound prescription in treating hepatic fibrosis of chronic hepatitis B patients. Medicine, 2020, 99(27), e21032. doi: 10.1097/MD.0000000000021032 PMID: 32629728
  71. Morita, H.; Abe, C. Negative feedforward control of body fluid homeostasis by hepatorenal reflex. Hypertens. Res., 2011, 34(8), 895-905. doi: 10.1038/hr.2011.88 PMID: 21716295
  72. Zhang, Y.J.; Zheng, H.S.; Xu, L.Y.; Li, J.Y. Research progress on oral prolonged-release preparation of traditional Chinese medicine. Zhongguo Zhongyao Zazhi, 2005, 30(22), 1794-1796. PMID: 16468378
  73. Wang, J.; Wang, Y.Y.; Yang, G. Methods and modes about the theory of traditional Chinese prescription composition. Zhongguo Zhongyao Zazhi, 2005, 30(1), 6-8, 11. PMID: 15714789
  74. Huang, S.K.; Ho, Y.L.; Chang, Y.S. Prescriptions of traditional Chinese medicine, western medicine, and integrated Chinese–Western medicine for allergic rhinitis under the National Health Insurance in Taiwan. J. Ethnopharmacol., 2015, 173, 212-216. doi: 10.1016/j.jep.2015.06.051 PMID: 26172981
  75. Chan, M.F.; Mok, E.; Wong, Y.S.; Tong, T.F.; Day, M.C.; Tang, C.K.Y.; Wong, D.H.C. Attitudes of hong kong chinese to traditional chinese medicine and western medicine: Survey and cluster analysis. Complement. Ther. Med., 2003, 11(2), 103-109. doi: 10.1016/S0965-2299(03)00044-X PMID: 12801496
  76. Wang, M.; Wu, T.; Zuo, Z.; You, Y.; Yang, X.; Pan, L.; Hu, Y.; Luo, X.; Jiang, L.; Xia, Z.; Deng, M. Evaluation of current medical approaches for COVID-19: A systematic review and meta-analysis. BMJ Support. Palliat. Care, 2021, 11(1), 45-52. doi: 10.1136/bmjspcare-2020-002554 PMID: 32958501
  77. Kozar, R.A.; Crandall, M.; Shanmuganathan, K.; Zarzaur, B.L.; Coburn, M.; Cribari, C.; Kaups, K.; Schuster, K.; Tominaga, G.T. Organ injury scaling 2018 update: Spleen, liver, and kidney. J. Trauma Acute Care Surg., 2018, 85(6), 1119-1122. doi: 10.1097/TA.0000000000002058 PMID: 30462622
  78. Calle-Toro, J.S.; Back, S.J.; Viteri, B.; Andronikou, S.; Kaplan, S.L. Liver, spleen, and kidney size in children as measured by ultrasound: A systematic review. J. Ultrasound Med., 2020, 39(2), 223-230. doi: 10.1002/jum.15114 PMID: 31418892
  79. Bałan, B.J.; Lewicki, S.; Siwicki, A.K.; Stelmasiak, M.; Skopiński, P.; Skopińska-Różewska, E.; Wasiutyński, A.; Zdanowski, R. Morphometric abnormalities in spleen and kidney of the progeny of mice fed American cranberry extract (Vaccinium macrocarpon) during pregnancy and lactation. Pol. J. Vet. Sci., 2017, 20(1), 57-65. doi: 10.1515/pjvs-2017-0009 PMID: 28525344

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers