Green Synthetic Strategies and Pharmaceutical Applications of Thiazine and its Derivatives: An Updated Review


Cite item

Full Text

Abstract

Thiazines are a sizable class of organic heterocycles that are notable for their skeletal versatility and relative chemical simplicity, making them among the most flexible sources of biologically active compounds. The term \"green synthesis\" refers to implementing energy-efficient procedures for the nature-friendly production of materials and chemicals using green solvents, catalysts, and suitable reaction conditions. Considering the importance of green chemistry and the outstanding therapeutic profile of thiazines, the present work was designed to review the recent advances in green chemistry-based synthetic strategies of thiazine and its derivatives. The green synthetic approaches, including microwave-assisted, ultrasound-assisted, and various other synthetic methods for thiazine and its derivatives, were discussed and generalized. In addition, applications of thiazine and its derivatives in pharmaceutical sciences were explained with examples of marketed drugs.The discussed sustainable synthetic methods for thiazines and their derivatives could be useful in developing other medicinally important lead molecules. They could also aid in developing new synthetic schemes and apparatuses that may simplify chemical manufacturing processes and enable novel reactions with minimal by-products while questing for optimal, green solvents. This review can help anyone interested in this fascinating class of heterocycles to make decisions about selecting targets and tasks for future research.

About the authors

Yashumati Ratan

Department of Pharmacy, Banasthali Vidyapith

Author for correspondence.
Email: info@benthamscience.net

Aishwarya Rajput

Department of Pharmacy, Banasthali Vidyapith

Email: info@benthamscience.net

Ashutosh Pareek

Department of Pharmacy, Banasthali Vidyapith

Author for correspondence.
Email: info@benthamscience.net

Vivek Jain

Department of Pharmaceutical Sciences, MLSU

Email: info@benthamscience.net

Aaushi Pareek

Department of Pharmacy, Banasthali Vidyapith

Email: info@benthamscience.net

Madan Gupta

School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies

Email: info@benthamscience.net

Mohammad Kamal

Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Al-mulla, A. A review: Biological importance of heterocyclic compounds. Der Pharma Chem., 2017, 9(13), 141-147.
  2. Jampilek, J. Heterocycles in medicinal chemistry. Molecules., 2019, 24(21), 3839. doi: 10.3390/molecules24213839 PMID: 31731387
  3. Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043. doi: 10.1021/cr300176g PMID: 23347156
  4. Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280. doi: 10.2174/18741045-v16-e2202280
  5. Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. IJPSR, 2012, 3(9), 2947-2954.
  6. Shcherbakova, I. A drug mystery of heterocycles: Various molecules for one target or one compound for multiple targets? Chem. Heterocycl. Compd., 2013, 49(1), 2-18. doi: 10.1007/s10593-013-1229-x
  7. Badshah, S.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules., 2016, 21(8), 1054. doi: 10.3390/molecules21081054 PMID: 27537865
  8. Barkenbus, C.; Landis, P.S. The preparation of 1,4-thiazine. J. Am. Chem. Soc., 1948, 70(2), 684-685. doi: 10.1021/ja01182a075
  9. Okafor, C.O. The chemistry and applications of angular phenothiazine derivatives. Dyes Pigments, 1986, 7(4), 249-287. doi: 10.1016/0143-7208(86)85013-6
  10. Yadav, L.D.S.; Singh, A. Microwave activated solvent-free cascade reactions yielding highly functionalised 1,3-thiazines. Tetrahedron Lett., 2003, 44(30), 5637-5640. doi: 10.1016/S0040-4039(03)01353-4
  11. Stoodley, R.J. 1,4-thiazines and their dihydro derivatives. Katritzky, AR; Boulton, AJ In: Advances in Heterocyclic Chemistry; Academic Press, 1979; 24, pp. 293-361.
  12. Chaviara, A.T.; Cox, P.J.; Repana, K.H.; Papi, R.M.; Papazisis, K.T.; Zambouli, D.; Kortsaris, A.H.; Kyriakidis, D.A.; Bolos, C.A. Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J. Inorg. Biochem., 2004, 98(8), 1271-1283. doi: 10.1016/j.jinorgbio.2004.05.010 PMID: 15271502
  13. Nagaraj, A.; Sanjeeva, R.C. Synthesis and biological study of novel bis-chalcones, bis-thiazines and bis-pyrimidines. J. Indian Chem. Soc., 2008, 5(2), 262-267. doi: 10.1007/BF03246116
  14. Sultana, R.; Sarmad, A.; Salman, B.S. Synthesize, characterize and evaluation of antibacterial and anti-fungal activity of thiazines. Int J Res Pharm Chem Anal., 2018, 1(1), 25-35.
  15. Slyvka, N.; Saliyeva, L.; Holota, S.; Tkachuk, V. Convenient synthesis of 4-pyridinyloxy-modified inflammatory agents. Biointerface Res. Appl. Chem., 2022, 13(2), 183. doi: 10.33263/BRIAC132.183
  16. Singh, U.P.; Pathak, M.; Dubey, V.; Bhat, H.R.; Gahtori, P.; Singh, R.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor. Chem. Biol. Drug Des., 2012, 80(4), 572-583. doi: 10.1111/j.1747-0285.2012.01430.x PMID: 22702334
  17. Rathod, S.P.; Charjan, A.P.; Rajput, P.R. Synthesis and antibacterial activities of chloro-substituted-1, 3-thiazines. Rasayan J. Chem., 2010, 3(2), 363-367.
  18. Jeleń, M.; Pluta, K.; Zimecki, M.; Morak-Młodawska, B.; Artym, J.; Kocięba, M. 6-Substituted 9-fluoroquino3,2-bbenzo1,4thiazines display strong antiproliferative and antitumor properties. Eur. J. Med. Chem., 2015, 89(7), 411-420. doi: 10.1016/j.ejmech.2014.10.070 PMID: 25462256
  19. Tozkoparan, B.; Aktay, G.; Yeşilada, E. Synthesis of some 1,2,4-triazolo3,2-b-1,3-thiazine-7-ones with potential analgesic and antiinflammatory activities. Farmaco, 2002, 57(2), 145-152. doi: 10.1016/S0014-827X(01)01195-8 PMID: 11902657
  20. Chauhan, N.B.; Patel, N.B.; Patel, V.M.; Mistry, B.M. Synthesis and biological evaluation of coumarin clubbed thiazines scaffolds as antimicrobial and antioxidant. Med. Chem. Res., 2018, 27(9), 2141-2149. doi: 10.1007/s00044-018-2222-9
  21. Ferreira, M.; Assunção, L.S.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B.; Sá, M.M. Synthesis of 1,3-thiazine-2,4-diones with potential anticancer activity. Eur. J. Med. Chem., 2013, 70(12), 411-418. doi: 10.1016/j.ejmech.2013.10.017 PMID: 24177368
  22. Kalyankar, B.D.; Wasekar, C.P.; Yadao, S.B. An expeditious approach towards synthesis of pyrazolo3,4-D1,3thiazine derivatives with their antimicrobial evaluation. Int J Res Biosci Agric Technol., 2022, 2(10), 126-131.
  23. Satbir, M.; Savita, N.; Suchita, S.; Virender, S. Synthesis and biological activities of 1,4-benzothiazine derivatives: An overview. Chem. Biol. Interact., 2017, 7(1), 1-18.
  24. Begum, S.; Begum, A. Therapeutic utility of 1,3-thiazines mini review. Saudi J Med Pharm Sci., 2016, 2(12), 326-338.
  25. Ishak, E.A. Microwave-assisted green synthesis of 1,3-thiazines as potential anti-fungal agents using lemon juice. J. Mater. Environ. Sci., 2019, 10(1), 54-59.
  26. Boiani, M.; Piacenza, L.; Hernández, P.; Boiani, L.; Cerecetto, H.; González, M.; Denicola, A. Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved? Biochem. Pharmacol., 2010, 79(12), 1736-1745. doi: 10.1016/j.bcp.2010.02.009 PMID: 20178775
  27. Shapiro, G.I.; LoRusso, P.; Dowlati, A.; T Do, K.; Jacobson, C.A.; Vaishampayan, U.; Weise, A.; Caimi, P.F.; Eder, J.P.; French, C.A.; Labriola-Tompkins, E.; Boisserie, F.; Pierceall, W.E.; Zhi, J.; Passe, S.; DeMario, M.; Kornacker, M.; Armand, P. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br. J. Cancer, 2021, 124(4), 744-753. doi: 10.1038/s41416-020-01180-1 PMID: 33311588
  28. Meltzer, H.Y. Atypical antipsychotic drugs: Theories of mechanism of action. Sibley, DR; Hanin, I.; Kuhar, M.; Phil, S. In: Handbook of Contemporary Neuropharmacology; John Wiley & Sons, Inc, 2007; pp. 411-448.
  29. Grinchii, D.; Dremencov, E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int. J. Mol. Sci., 2020, 21(24), 9532. doi: 10.3390/ijms21249532 PMID: 33333774
  30. Berkowitz, R.D.; Mack, R.J.; McCallum, S.W. Meloxicam for intravenous use: Review of its clinical efficacy and safety for management of postoperative pain. Pain Manag., 2021, 11(3), 249-258. doi: 10.2217/pmt-2020-0082 PMID: 33291975
  31. Shukla, D.; Bhola, N.D.; Bhola, R.D.; Nimje, A.M. Efficacy of preoperative piroxicam, diclofenac, paracetamol with tramadol and placebo tablets for relief of postoperative pain after the removal of impacted mandibular third molars: A randomised controlled trial. Cureus., 2022, 14(7), e26839. doi: 10.7759/cureus.26839 PMID: 35974862
  32. Egan, M.F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; Tariot, P.N.; Vellas, B.; van Dyck, C.H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Mo, Y.; Sur, C.; Michelson, D. Randomized trial of verubecestat for prodromal alzheimer’s disease. N. Engl. J. Med., 2019, 380(15), 1408-1420. doi: 10.1056/NEJMoa1812840 PMID: 30970186
  33. Ratan, Y.; Rajput, A.; Maleysm, S.; Pareek, A.; Jain, V.; Pareek, A.; Kaur, R.; Singh, G. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in alzheimer’s disease. Biomedicines., 2023, 11(5), 1398. doi: 10.3390/biomedicines11051398 PMID: 37239068
  34. Baig, R.B.N.; Varma, R.S. Solvent-free synthesis. In: An Introduction to Green Chemistry Methods; Luque, R.; Colmenares, J.C., Eds.; Future Science Group: London, 2013; pp. 18-38. doi: 10.4155/ebo.13.4
  35. Mahato, A.K.; Sahoo, B.M.; Banik, B.K.; Mohanta, B.C. Microwave-assisted synthesis: Paradigm of green chemistry. J. Indian Chem. Soc., 2018, 95(11), 1327-1339.
  36. Li, J.T.; Wang, S.X.; Chen, G.F.; Li, T.S. Some applications of ultrasound irradiation in organic synthesis. Curr. Org. Synth., 2005, 2(3), 415-436. doi: 10.2174/1570179054368509
  37. Geng, L.J.; Li, J.T.; Wang, S.X. Application of grinding method to solid-state organic synthesis. Youji Huaxue, 2005, 25(5), 608-613.
  38. Rajasekhar, K.K.; Ananth, V.S.; Nithiyananthan, T.S.; Hareesh, G.; Kumar, P.N.; Reddy, R.S.P. Comparative study of conventional and microwave induced synthesis of selected heterocyclic molecules. Int. J. Chemtech Res., 2010, 2(1), 592-597.
  39. Suprita, S.R.; Singh, S. Green methods for synthesis of various Heterocycles: Sustainable approach. Int. J. Chem. Stud., 2017, 5(6), 479-485.
  40. Vlocskó, R.B.; Xie, G.; Török, B. Green synthesis of aromatic nitrogen-containing heterocycles by catalytic and non-traditional activation methods. Molecules, 2023, 28(10), 4153. doi: 10.3390/molecules28104153 PMID: 37241894
  41. Das Soni, G. Advantages of green chemistry. Int J Res., 2015, 3(9), 1-5.
  42. Koel, M.; Kaljurand, M. Application of the principles of green chemistry in analytical chemistry. Pure Appl. Chem., 2006, 78(11), 1993-2002. doi: 10.1351/pac200678111993
  43. Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules., 2015, 20(6), 10928-10946. doi: 10.3390/molecules200610928 PMID: 26076112
  44. Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J.; Alvarez-Builla, J. Green chemistry in organic synthesis. ChemInform., 2010, 41(25) doi: 10.1002/chin.201025200
  45. Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo1,3thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47, 128201. doi: 10.1016/j.bmcl.2021.128201 PMID: 34139328
  46. Molloa, M.C.; Biscegliaa, J.A.; Kilimcilera, N.B.; Mancinellib, M.; Orelli, L.R. Microwave-assisted synthesis of 2-substituted 2-thiazolines and 5,6-dihydro-4H-1,3-thiazines. Synthesis, 2020, 52(11)
  47. Chougale, U.B.; Kharade, P.R.; Chavan, H.V.; Dhongade, S.R. Microwave assisted synthesis of some novel thiazine derivatives and prediction of their bioactivity. Mater. Today Proc., 2020, 23, 301-308. doi: 10.1016/j.matpr.2020.02.028
  48. Nongkhlaw, R.L.; Nongrum, R.; Tumtin, S.; Phucho, I.T. Green and efficient synthesis of 1,2-bis(2H-benzoe1,3oxazin-3(4H)-yl)ethanes and 1,2-bis(2H-benzoe1,3thiazin-3(4H)-yl)ethanes. ARKIVOC, 2019, 2019(5), 255-264. doi: 10.24820/ark.5550190.p010.854
  49. Jun, H.G.; Kim, E.M.; Yoon, H.J.; Gong, Y.D. Microwave-assisted solid-phase synthesis of N-substituted-2-aminobenzod1,3thiazine derivatives from a BOMBA resin. Bull. Korean Chem. Soc., 2017, 38(3), 334-341. doi: 10.1002/bkcs.11088
  50. Wadhwa, P.; Kaur, T.; Sharma, A. Solvent-free pot-, atom- and step-economic synthesis of novel benzo d thiazole- 1,3- thiazine hybrids in a one-pot reaction. Asian J. Org. Chem., 2016, 5(6), 763-769. doi: 10.1002/ajoc.201600098
  51. Balwe, S.G.; Shinde, V.V.; Jeong, Y.T. Iron-catalyzed microwave-promoted expeditious one-pot synthesis of benzob1,4thiazine-4-carbonitrile under solvent-free condition. Tetrahedron Lett., 2016, 57(46), 5074-5078. doi: 10.1016/j.tetlet.2016.10.002
  52. Jayaseelan, D.; Ganapathi, M.; Guhanathan, S. Microwave assisted synthesis of 4,6- diphenyl substituted thiazine derivatives and its characterisation. Org Chem An Inidan J., 2015, 11(8), 305-311.
  53. Bhowmik, S.; Mishra, A.; Batra, S. Microwave-assisted one-pot synthesis of 2-aryl-5,6-dihydro-4H-1,3-thiazines via reaction between Lawesson’s reagent and allyl arylamides derived from Morita–Baylis–Hillman acetates. RSC Advances, 2011, 1(8), 1464-1470. doi: 10.1039/c1ra00362c
  54. Rathod, A.K.; Kulkarni, G.M. A microwave-assisted : Synthesis and characterization of thiazines or 2-mercapto-4,6- Diaryl-5,6-dihydropyrimidines and their antimicrobial activity. Int. J. Pharm. Tech. Res., 2011, 3(1), 197-200.
  55. Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N′-1-phenylethylidene-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377. doi: 10.1016/j.ejmech.2011.03.020 PMID: 21470723
  56. Gaina, L.; Porumb, D.; Silaghi-Dumitrescu, I.; Cristea, C.; Silaghi-Dumitrescu, L. On the microwave-assisted synthesis of acylphenothiazine derivatives — Experiment versus theory synergism. Can. J. Chem., 2010, 88(1), 42-49. doi: 10.1139/V09-163
  57. Wan, J.P.; Pan, Y.H.; Mao, H.; Chen, Y.H.; Pan, Y.J. Microwave-assisted three-component reaction for rapid synthesis of some 5, 6-dihydro-4H-1,3- thiazine derivatives under solvent-free conditions. Synth. Commun., 2010, 40(5), 709-716. doi: 10.1080/00397910903013689
  58. Charris, J.; Barazarte, A.; Domínguez, J.; Gamboa, N. Microwave-assisted synthesis of quinolones and 4H-1,4-benzo thiazine 1,1-dioxides. J. Chem. Res., 2005, 2005(1), 27-28. doi: 10.3184/0308234053431158
  59. Yadav, L.D.S.; Yadav, S.; Rai, V.K. Mercaptoacetic acid based expeditious synthesis of polyfunctionalised 1,3-thiazines. Tetrahedron, 2005, 61(42), 10013-10017. doi: 10.1016/j.tet.2005.08.021
  60. Dandia, A.; Arya, K.; Sati, M.; Gautam, S. Microwave assisted green chemical synthesis of novel spiroindole-pyrido thiazines: a system reluctant to be formed under thermal conditions. Tetrahedron., 2004, 60(24), 5253-5258. doi: 10.1016/j.tet.2004.04.018
  61. Dandia, A.; Singh, R.; Mérienne, C.; Morgant, G.; Loupy, A. Solvent-free one-pot synthesis and crystal structure of a spiroindole-thiazine. Sulfur Letters, 2003, 26(5-6), 201-207. doi: 10.1080/02786110310001637617
  62. Mishra, A.; Singh, S.; Quraishi, M.A.; Srivastava, V. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int., 2019, 51(4), 345-356. doi: 10.1080/00304948.2019.1596469
  63. Ansari, M.D.; Sagir, H.; Yadav, V.B.; Yadav, N.; Verma, A.; Siddiqui, I.R. Organo-nanocatalysis: An emergent green methodology for construction of bioactive oxazines and thiazines under ultrasonic irradiation. J. Mol. Struct., 2019, 1196, 54-57. doi: 10.1016/j.molstruc.2019.06.052
  64. Arafa, W.A.A.; Faty, R.A.M.; Mourad, A.K. A new sustainable strategy for synthesis of novel series of bis-imidazole and bis-1, 3-thiazine derivatives. J. Heterocycl. Chem., 2018, 55(8), 1886-1894. doi: 10.1002/jhet.3221
  65. Choudhary, A.S.; Malik, M.K.; Patil, S.R.; Prabhu, K.H.; Deshmukh, R.R.; Sekar, N. Phenazines and thiazine: Green synthesis, photophysical properties and dichroic behavior in nematic host. Can. Chem. Trans., 2014, 2(4), 365-380.
  66. Arya, K.; Rawat, D.S.; Sasai, H. Zeolite supported Brønsted-acid ionic liquids: an eco approach for synthesis of spiroindole-pyrido3,2-ethiazine in water under ultrasonication. Green Chem., 2012, 14(7), 1956-1963. doi: 10.1039/c2gc35168d
  67. Zia-ur-Rehman, M.; Choudary, J.A.; Elsegood, M.R.J.; Siddiqui, H.L.; Khan, K.M. A facile synthesis of novel biologically active 4-hydroxy-N′-(benzylidene)-2H-benzoe1,2thiazine-3-carbohydrazide 1,1-dioxides. Eur. J. Med. Chem., 2009, 44(3), 1311-1316. doi: 10.1016/j.ejmech.2008.08.002 PMID: 18804313
  68. Dabholkar, V V.; Ansari, FY. Synthesis of thiazines using an unusual means-sonication. Indian J Chem - Sect B Org Med Chem., 2008, 47(B), 1759-1761.
  69. Dazmiri, M.G.; Hosseini, S.N.; Ghasemi, N. ZnO/Fe3O4 MNPs promoted green synthesis of imidazoline under solvent-free Conditions. Iran J Org Chem., 2022, 14(1), 3269-3275.
  70. Bdaiwi, Z.M.; Ghanem, H.T. Synthesis and characterization of some heterocyclic derivatives from 2-amino thiazol and study of biological activity of prepared derivatives. Int J Pharm Res., 2020, 12(2), 1207-1216.
  71. Bankar, V.V.; Dhankar, R.P. A practical green synthesis of thiazine derivatives using phase transfer catalyst. Rasayan J. Chem., 2018, 11(3), 1294-1299. doi: 10.31788/RJC.2018.1134012
  72. Saroha, M.; Khanna, G.; Khurana, J.M. Green synthesis of novel naphtho1,2-e/benzo e1,3 thiazine derivatives via one-pot three-component reaction using tetra n-butyl ammonium bromide. ChemistrySelect, 2018, 3(44), 12560-12562. doi: 10.1002/slct.201802778
  73. Ghasemi, N. Synthesis of 1, 3-thiazines using N-formylmorpholine as a green solvent. Iran J Org Chem., 2018, 10(2), 2373-2376.
  74. Nematpour, M.; Abedi, E.; Sadeghi, V. A green, synthesis of spiro-indene-2,6′-thiazines from tetramethylguanidine-heterocumulene and ninhydrin-malononitrile adducts. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(7), 783-786. doi: 10.1080/10426507.2017.1286490
  75. Wu, H.M.; Zhou, K.; Wu, T.; Cao, Y.G. Synthesis of pyrazine-1,3-thiazine hybrid analogues as antiviral agent against HIV-1, influenza A (H1N1), enterovirus 71 (EV71), and coxsackievirus B3 (CVB3). Chem. Biol. Drug Des., 2016, 88(3), 411-421. doi: 10.1111/cbdd.12769 PMID: 27062664
  76. Tayade, D.; Ingole, S. Green synthesis of 2-substitutedimino-4-amino-6-methyl formamidino-1,3,5- thiadiazines. Int J Chem Pharm Sci., 2016, 7(2), 52-54.
  77. Siddiqui, I.R.; Rahila; Shamim, S.; Rai, P.; Shireen; Waseem, M.A.; Srivastava, A.; Srivastava, A. Basic ionic liquid promoted domino knoevenagel-thia-michael reaction: An efficient and multicomponent strategy for synthesis of 1, 3-thiazines. J. Heterocycl. Chem., 2016, 53(4), 1284-1291. doi: 10.1002/jhet.2379
  78. Edayadulla, N.; Ramesh, P. Synthesis of 2,6-dicarbethoxy-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxide derivatives as potent anticonvulsant agents. Eur. J. Med. Chem., 2015, 106, 44-49. doi: 10.1016/j.ejmech.2014.01.010 PMID: 26519928
  79. Singh, U.P.; Bhat, H.R.; Singh, R.K. Ceric ammonium nitrate (CAN) catalysed expeditious one-pot synthesis of 1,3-thiazine as IspE kinase inhibitor of Gram-negative bacteria using polyethylene glycol (PEG-400) as an efficient recyclable reaction medium. C. R. Chim., 2013, 16(5), 462-468. doi: 10.1016/j.crci.2012.11.019
  80. Dandia, A.; Singh, R.; Saini, D. Ionic liquid-mediated three-component synthesis of fluorinated spiro-thiazine derivatives and their antimycobacterial and DNA cleavage activities. J. Chem. Sci., 2013, 125(5), 1045-1053. doi: 10.1007/s12039-013-0493-8
  81. Rai, V.K.; Rai, P.K.; Thakur, Y. Masked mercapto acid-driven MCR in task-specific ionic liquid: A new sterocontrolled entry into bicyclic 1,3-thiazines. Tetrahedron Lett., 2013, 54(48), 6469-6473. doi: 10.1016/j.tetlet.2013.09.068
  82. Il, E.S.; Kim, D.G.; Kodess, M.I.; Matochkina, E.G.; Slepukhin, P.A. Synthesis of novel fluorine- and iodine-containing 1,2,4triazolo3,4-b1,3thiazines based 3-(alkenylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiols. J. Fluor. Chem., 2013, 149(32), 24-29.
  83. Zhao, Y.; Bai, Y.; Zhang, Q.; Chen, Z.; Dai, Q.; Ma, C. A facile method for the synthesis of pyridazino4,5-b1,4thiazine-diones via Smiles rearrangement. Tetrahedron Lett., 2013, 54(25), 3253-3255. doi: 10.1016/j.tetlet.2013.04.026
  84. Rostami-Charati, F.; Hossaini, Z.; Moghimi, M.; Kowsari, E. A facile one-pot synthesis of functionalized thiazines in water. Chin. Chem. Lett., 2012, 23(9), 1007-1010. doi: 10.1016/j.cclet.2012.06.033
  85. Adly, O.M.I. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 95, 483-490. doi: 10.1016/j.saa.2012.04.030 PMID: 22580142
  86. Banda, G.; Hipparagi, S.M. Ramjith. U.S., Jacob CM. Microwave assisted synthesis of fluoro, chloro 2-substituted benzimidazole thiazine derivatives for antibacterial and analgesic activities. IJRPS, 2012, 2(3), 146-158.
  87. Elarfi, M.J.; Al-difar, H.A. Synthesis of some heterocyclic compounds derived from chalcones. Sci. Revs. Chem. Commun., 2012, 2(2), 103-107.
  88. Wang, W.; Zhao, B.; Xu, C.; Wu, W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int. J. Org. Chem., 2012, 2(2), 117-120. doi: 10.4236/ijoc.2012.22018
  89. Baharfar, R.; Baghbanian, S.M.; Vahdat, S.M. An efficient one-pot synthesis of pyrimido2,1-b1,3thiazine derivatives by reaction of activated acetylenes, thiouracils, and isocyanides. Tetrahedron Lett., 2011, 52(45), 6018-6020. doi: 10.1016/j.tetlet.2011.09.008
  90. Yavari, I.; Nematpour, M.; Hossaini, Z. Ph3P-mediated one-pot synthesis of functionalized 3,4-dihydro-2H-1,3-thiazines from N,N′-dialkylthioureas and activated acetylenes in water. Monatsh. Chem., 2010, 141(2), 229-232. doi: 10.1007/s00706-009-0247-y
  91. Yadav, L.D.S.; Rai, V.K.; Yadav, B.S. The first ionic liquid-promoted one-pot diastereoselective synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones using masked amino/mercapto acids. Tetrahedron., 2009, 65(7), 1306-1315. doi: 10.1016/j.tet.2008.12.050
  92. Bansode, T.N.; Shelke, J.V.; Dongre, V.G. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur. J. Med. Chem., 2009, 44(12), 5094-5098. doi: 10.1016/j.ejmech.2009.07.006 PMID: 19651462
  93. Indumathi, S.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. l-Proline-catalysed facile green protocol for the synthesis and antimycobacterial evaluation of 1,4-thiazines. Eur. J. Med. Chem., 2009, 44(12), 4978-4984. doi: 10.1016/j.ejmech.2009.09.001 PMID: 19781824
  94. Koketsu, M.; Tanaka, K.; Takenaka, Y.; Kwong, C.D.; Ishihara, H. Synthesis of 1,3-thiazine derivatives and their evaluation as potential antimycobacterial agents. Eur. J. Pharm. Sci., 2002, 15(3), 307-310. doi: 10.1016/S0928-0987(02)00014-3 PMID: 11923063
  95. López-Muñoz, F.; Alamo, C.; cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry, 2005, 17(3), 113-135. doi: 10.1080/10401230591002002 PMID: 16433053
  96. Boyd-Kimball, D.; Gonczy, K.; Lewis, B.; Mason, T.; Siliko, N.; Wolfe, J. Classics in chemical neuroscience: Chlorpromazine. ACS Chem. Neurosci., 2019, 10(1), 79-88. doi: 10.1021/acschemneuro.8b00258 PMID: 29929365
  97. Dudley, K.; Liu, X.; De Haan, S. Chlorpromazine dose for people with schizophrenia. Cochrane Database Syst. Rev., 2017, 4(4), CD007778. PMID: 28407198
  98. Matar, H.E.; Almerie, M.Q.; Sampson, S. Fluphenazine (oral) versus placebo for schizophrenia. Cochrane Database Syst. Rev., 2013, 7(7), CD006352. PMID: 23861067
  99. Lytle, S.; McVoy, M.; Sajatovic, M. Long-acting injectable antipsychotics in children and adolescents. J. Child Adolesc. Psychopharmacol., 2017, 27(1), 2-9. doi: 10.1089/cap.2016.0055 PMID: 28112539
  100. Sampford, J.R.; Sampson, S.; Li, B.G.; Zhao, S.; Xia, J.; Furtado, V.A. Fluphenazine (oral) versus atypical antipsychotics for schizophrenia. Cochrane Libr., 2016, 2016(7), CD010832. doi: 10.1002/14651858.CD010832.pub2 PMID: 27370402
  101. Maayan, N.; Quraishi, S.N.; David, A.; Jayaswal, A.; Eisenbruch, M.; Rathbone, J.; Asher, R.; Adams, C.E. Fluphenazine decanoate (depot) and enanthate for schizophrenia. Cochrane Libr., 2015, 2(2), CD000307. doi: 10.1002/14651858.CD000307.pub2 PMID: 25654768
  102. Gardos, G.; Tecce, J.J.; Hartmann, E.; Bowers, P.; Cole, J.O. Treatment with mesoridazine and thioridazine in chronic schizophrenia: I. Assessment of clinical and electrophysiologic responses in refractory hallucinating schizophrenics. Compr. Psychiatry, 1978, 19(6), 517-525. doi: 10.1016/0010-440X(78)90083-4 PMID: 720036
  103. Hartung, B.; Sampson, S.; Leucht, S. Perphenazine for schizophrenia. Cochrane Database Syst. Rev., 2015, 2015(3), CD003443. PMID: 25749632
  104. Tardy, M.; Huhn, M. RR E, S L. Perphenazine versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev., 2014, 10(CD009369), 1-41.
  105. Hempel, C.; Nörenberg, W.; Sobottka, H.; Urban, N.; Nicke, A.; Fischer, W.; Schaefer, M. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology, 2013, 75, 365-379. doi: 10.1016/j.neuropharm.2013.07.027 PMID: 23954492
  106. Kazmi, I.H.; Waseem, A.; Qaisar, S.; Asif, K. Compare the effectiveness of ondansetron Vs prochlorperazine for preventing nausea & vomiting after laparoscopic cholecystectomy. Pak. J. Med. Health Sci., 2021, 15(3), 555-557.
  107. Din, L.; Preuss, C.V. Prochlorperazine. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022; pp. 1-6.
  108. Whitworth, A.B.; Fleischhacker, W.W. Adverse effects of antipsychotic drugs. Int. Clin. Psychopharmacol., 1995, 9(S5), 21-28. doi: 10.1097/00004850-199501005-00005 PMID: 7622830
  109. Sibilio, J.P.; Andrew, G.; Dart, D.; Moore, K.B.; Stehman, V.A. Treatment of chronic schizophrenia with promazine hydrochloride. Arch. Neurol. Psychiatry, 1957, 78(4), 419-424. doi: 10.1001/archneurpsyc.1957.02330400093012 PMID: 13457517
  110. Simpson, R.W.; Jesson, J.G. The effects of promazine (sparine) in chronic schizophrenia. J. Ment. Sci., 1958, 104(437), 1199-1202. doi: 10.1192/bjp.104.437.1199 PMID: 13621168
  111. Fenton, M.; Rathbone, J.; Reilly, J.; Sultana, A. Thioridazine for schizophrenia. Cochrane Database Syst. Rev., 2007, 2007(3), CD001944. PMID: 17636691
  112. McCreadie, R.G.; Todd, N.; Livingston, M.; Eccleston, D.; Watt, J.A.G.; Herrington, R.N.; Tait, D.; Crocket, G.; Mitchell, M.J.; Huitfeldf, B. A double-blind comparative study of remoxipride and thioridazine in the acute phase of schizophrenia. Acta Psychiatr. Scand., 1990, 82(S358), 136-137. doi: 10.1111/j.1600-0447.1990.tb05305.x PMID: 1978473
  113. Koch, K.; Mansi, K.; Haynes, E.; Adams, C.E.; Sampson, S.; Furtado, V.A. Trifluoperazine versus placebo for schizophrenia. Cochrane Database Syst. Rev., 2014, 2014(1), CD010226. PMID: 24414883
  114. Marques, L.O.; Lima, M.S.; Soares, B.G. Trifluoperazine for schizophrenia. Cochrane Database Syst. Rev., 2004, 2004(1), CD003545. PMID: 14974020
  115. Hanlon, T.; Ota, K.Y.; Livchitz, C.; Kurland, A.A. Chlorpromazine, triflupromazine, and prochlorperazine in chronic psychosis. Arch. Gen. Psychiatry, 1959, 1(2), 223. doi: 10.1001/archpsyc.1959.03590020119011
  116. Reinhardt, R.F.; Schiff, S.B.; Sinnett, R. The use of triflupromazine with iproniazid for the treatment of chronic schizophrenic patients. Am. J. Psychiatry, 1959, 116(1), 68-69. doi: 10.1176/ajp.116.1.68 PMID: 13661455
  117. Habib, A.S.; Reuveni, J.; Taguchi, A.; White, W.D.; Gan, T.J. A comparison of ondansetron with promethazine for treating postoperative nausea and vomiting in patients who received prophylaxis with ondansetron: A retrospective database analysis. Anesth. Analg., 2007, 104(3), 548-551. doi: 10.1213/01.ane.0000252433.73485.be PMID: 17312206
  118. Deitrick, C.L.; Mick, D.J.; Lauffer, V.; Prostka, E.; Nowak, D.; Ingersoll, G. A comparison of two differing doses of promethazine for the treatment of postoperative nausea and vomiting. J. Perianesth. Nurs., 2015, 30(1), 5-13. doi: 10.1016/j.jopan.2014.01.009 PMID: 25616881
  119. Cantisani, C.; Ricci, S.; Grieco, T.; Paolino, G.; Faina, V.; Silvestri, E.; Calvieri, S. Topical promethazine side effects: Our experience and review of the literature. BioMed Res. Int., 2013, 2013(151509), 1-9. doi: 10.1155/2013/151509 PMID: 24350243
  120. Elakkad, Y.E.; Younis, M.K.; Allam, R.M.; Mohsen, A.F.; Khalil, I.A. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int. J. Pharm., 2021, 601(120483), 120483. doi: 10.1016/j.ijpharm.2021.120483 PMID: 33737098
  121. Yilmaz, E. The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid–tenoxicam injections in the treatment of patients with knee osteoarthritis. Clin. Rheumatol., 2019, 38(11), 3243-3252. doi: 10.1007/s10067-019-04641-y PMID: 31243588
  122. Goindi, S.; Narula, M.; Kalra, A. Microemulsion-based topical hydrogels of tenoxicam for treatment of arthritis. AAPS PharmSciTech, 2016, 17(3), 597-606. doi: 10.1208/s12249-015-0383-0 PMID: 26285672
  123. Gonzalez, J.P.; Todd, P.A. Tenoxicam. Drugs, 1987, 34(3), 289-310. doi: 10.2165/00003495-198734030-00001 PMID: 3315620
  124. Narayana, S.; Mohammed, Y.; Arun, H.S. A comparative study of efficacy and safety of piroxicam and naproxen in the management of pain in osteoarthritis of the knee. J. Nat. Sci. Biol. Med., 2018, 9(2), 180-184. doi: 10.4103/jnsbm.JNSBM_154_17
  125. Bachhav, A.A.; Ahire, S.A.; Jadhav, A.G. Preformulation study of piroxicam. Int. J. Pharm. Sci. Res., 2019, 10(2), 811-818.
  126. Dahl, S.L.; Ward, J.R. Pharmacology, clinical efficacy, and adverse effects of piroxicam, a new nonsteroidal anti-inflammatory agent. Pharmacotherapy, 1982, 2(2), 80-90. doi: 10.1002/j.1875-9114.1982.tb03178.x PMID: 6765393
  127. Cole, G.A.; Paul-Murphy, J.; Krugner-Higby, L.; Klauer, J.M.; Medlin, S.E.; Keuler, N.S.; Sladky, K.K. Analgesic effects of intramuscular administration of meloxicam in Hispaniolan parrots (Amazona ventralis) with experimentally induced arthritis. Am. J. Vet. Res., 2009, 70(12), 1471-1476. doi: 10.2460/ajvr.70.12.1471 PMID: 19951118
  128. Bekker, A.; Kloepping, C.; Collingwood, S. Meloxicam in the management of post-operative pain: Narrative review. J. Anaesthesiol. Clin. Pharmacol., 2018, 34(4), 450-457. doi: 10.4103/joacp.JOACP_133_18 PMID: 30774225
  129. Pathak, A.K. Meta-analytical research and therapeutic efficacy of meloxicam in arthritis. Int J Res Clin Med Pharm Pract., 2018, 1(1), 13-20.
  130. Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci., 2017, 104, 114-123. doi: 10.1016/j.ejps.2017.04.001 PMID: 28385631
  131. Ahmed, M.; Khanna, D.; Furst, D.E. Meloxicam in rheumatoid arthritis. Expert Opin. Drug Metab. Toxicol., 2005, 1(4), 739-751. doi: 10.1517/17425255.1.4.739 PMID: 16863437
  132. Noble, S.; Balfour, J.A. Meloxicam. Drugs, 1996, 51(3), 424-430. doi: 10.2165/00003495-199651030-00007 PMID: 8882380
  133. Wiseman, E.H.; Chiaini, J. Anti-inflammatory and pharmacokinetic properties of sudoxicam N-(2-thiazolyl)-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide. Biochem. Pharmacol., 1972, 21(17), 2323-2334. doi: 10.1016/0006-2952(72)90383-8 PMID: 4630489
  134. Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: insights into the hepatotoxicity of sudoxicam. Chem. Res. Toxicol., 2008, 21(9), 1890-1899. doi: 10.1021/tx800185b PMID: 18707140
  135. Barnette, D.A.; Schleiff, M.A.; Datta, A.; Flynn, N.; Swamidass, S.J.; Miller, G.P. Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicol. Lett., 2021, 338, 10-20. doi: 10.1016/j.toxlet.2020.11.015 PMID: 33253783
  136. Carty, T.J.; Marfat, A.; Moore, P.F.; Falkner, F.C.; Twomey, T.M.; Weissman, A. Ampiroxicam, an anti-inflammatory agent which is a prodrug of piroxicam. Agents Actions, 1993, 39(3-4), 157-165. doi: 10.1007/BF01998969 PMID: 8304243
  137. Chishiki, M.; Kawada, A.; Fujioka, A.; Hiruma, M.; Ishibashi, A.; Banba, H. Photosensitivity due to Ampiroxicam. Dermatology, 1997, 195(4), 409-410. doi: 10.1159/000246002 PMID: 9529571
  138. Hussain, Z.K. Histological study on the effect of ampiroxicam drug on liver of females mice. Iraqi J Sci., 2015, 56(1), 105-111.
  139. Redasani, V.K.; Shinde, A.B.; Surana, S.J. Antiinflammatory and gastroprotective evaluation of prodrugs of piroxicam. Ulcers., 2014, 2014(8), 1-4. doi: 10.1155/2014/729754
  140. Olkkola, K.T.; Brunetto, A.V.; Mattila, M.J. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet., 1994, 26(2), 107-120. doi: 10.2165/00003088-199426020-00004 PMID: 8162655
  141. Cherdchutham, W.; Sukhong, P.; Sae-oueng, K.; Supanwinijkul, N.; Wiangnak, K.; Srimuang, J.; Apichaimongkonkun, T.; Limratchapong, S.; Petchdee, S. Effects of xylazine and adrenaline combinations: Preliminary clinical application for non-surgical protocols of nephrosplenic entrapment in horses. Vet. World, 2021, 14(12), 3188-3193. doi: 10.14202/vetworld.2021.3188-3193 PMID: 35153411
  142. Karasu, A.; Gençcelep, M. The effect of xylazine HCl used in repeated sedations for sheep on biochemical and clinical values. Kafkas Univ. Vet. Fak. Derg., 2015, 21(6), 831-836.
  143. Veilleux-Lemieux, D.; Castel, A.; Carrier, D.; Beaudry, F.; Vachon, P. Pharmacokinetics of ketamine and xylazine in young and old Sprague-Dawley rats. J. Am. Assoc. Lab. Anim. Sci., 2013, 52(5), 567-570. PMID: 24041212
  144. Ruiz-Colón, K.; Chavez-Arias, C.; Díaz-Alcalá, J.E.; Martínez, M.A. Xylazine intoxication in humans and its importance as an emerging adulterant in abused drugs: A comprehensive review of the literature. Forensic Sci. Int., 2014, 240, 1-8. doi: 10.1016/j.forsciint.2014.03.015 PMID: 24769343
  145. Xiao, Y.F.; Wang, B.; Wang, X.; Du, F.; Benzinou, M.; Wang, Y.X.J. Xylazine-induced reduction of tissue sensitivity to insulin leads to acute hyperglycemia in diabetic and normoglycemic monkeys. BMC Anesthesiol., 2013, 13(1), 33. doi: 10.1186/1471-2253-13-33 PMID: 24138083
  146. Falk, N.; Berenstein, A.J.; Moscatelli, G.; Moroni, S.; González, N.; Ballering, G.; Freilij, H.; Altcheh, J. Effectiveness of Nifurtimox in the treatment of chagas disease: A long-term retrospective cohort study in children and adults. Antimicrob. Agents Chemother., 2022, 66(5), e02021-e21. doi: 10.1128/aac.02021-21 PMID: 35416710
  147. Thakare, R.; Dasgupta, A.; Chopra, S. Update on nifurtimox for treatment of Chagas disease. Drugs Today., 2021, 57(4), 251-263. doi: 10.1358/dot.2021.57.4.3251712 PMID: 33851689
  148. Berenstein, A.J.; Falk, N.; Moscatelli, G.; Moroni, S.; González, N.; Garcia-Bournissen, F.; Ballering, G.; Freilij, H.; Altcheh, J. Adverse events associated with nifurtimox treatment for chagas disease in children and adults. Antimicrob. Agents Chemother., 2021, 65(2), e01135-e20. doi: 10.1128/AAC.01135-20 PMID: 33168612
  149. Gudiol, C.; Nicolae, S.; Royo-Cebrecos, C.; Aguilar-Guisado, M.; Montero, I.; Martín-Gandul, C.; Perayre, M.; Berbel, D.; Encuentra, M.; Arnan, M.; Cisneros-Herreros, J.M.; Carratalà, J. Administration of taurolidine-citrate lock solution for prevention of central venous catheter infection in adult neutropenic haematological patients: A randomised, double-blinded, placebo-controlled trial (TAURCAT). Trials, 2018, 19(1), 264. doi: 10.1186/s13063-018-2647-y PMID: 29720244
  150. Korzilius, J.W.; Gillis, V.E.L.M.; Wouters, Y.; Wanten, G.J.A. Taurolidine-related adverse events in patients on home parenteral nutrition frequently indicate catheter-related problems. Clin. Nutr., 2022, 41(10), 2178-2184. doi: 10.1016/j.clnu.2022.07.025 PMID: 36067590
  151. Liu, Y.; Zhang, A.Q.; Cao, L.; Xia, H.T.; Ma, J.J. Taurolidine lock solutions for the prevention of catheter-related bloodstream infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One, 2013, 8(11), e79417. doi: 10.1371/journal.pone.0079417 PMID: 24278133
  152. Cai, Y.; Yang, L.; Shangguan, X.; Zhao, Y.; Huang, R. Status and safety signals of cephalosporins in children: A spontaneous reporting database study. Front. Pharmacol., 2021, 12(736618), 736618. doi: 10.3389/fphar.2021.736618 PMID: 34744720
  153. Chaudhry, S.B.; Veve, M.P.; Wagner, J.L. Cephalosporins: A focus on side chains and β-lactam cross-reactivity. Pharmacy., 2019, 7(3), 103. doi: 10.3390/pharmacy7030103 PMID: 31362351
  154. Macy, E.; Contreras, R. Adverse reactions associated with oral and parenteral use of cephalosporins: A retrospective population-based analysis. J. Allergy Clin. Immunol., 2015, 135(3), 745-752.e5. doi: 10.1016/j.jaci.2014.07.062 PMID: 25262461
  155. Egan, M.F.; Mukai, Y.; Voss, T.; Kost, J.; Stone, J.; Furtek, C.; Mahoney, E.; Cummings, J.L.; Tariot, P.N.; Aisen, P.S.; Vellas, B.; Lines, C.; Michelson, D. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 68. doi: 10.1186/s13195-019-0520-1 PMID: 31387606
  156. Oblak, A.L.; Cope, Z.A.; Quinney, S.K.; Pandey, R.S.; Biesdorf, C.; Masters, A.R.; Onos, K.D.; Haynes, L.; Keezer, K.J.; Meyer, J.A.; Peters, J.S.; Persohn, S.A.; Bedwell, A.A.; Eldridge, K.; Speedy, R.; Little, G.; Williams, S.P.; Noarbe, B.; Obenaus, A.; Sasner, M.; Howell, G.R.; Carter, G.W.; Williams, H.; Lamb, B.T.; Territo, P.R.; Sukoff Rizzo, S.J. Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice. Alzheimers Dement., 2022, 8(1), e12317. doi: 10.1002/trc2.12317 PMID: 35846156
  157. Roboz, G.J.; Desai, P.; Lee, S.; Ritchie, E.K.; Winer, E.S.; DeMario, M.; Brennan, B.; Nüesch, E.; Chesne, E.; Brennan, L.; Lechner, K.; Kornacker, M.; DeAngelo, D.J. A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk. Lymphoma, 2021, 62(7), 1740-1748. doi: 10.1080/10428194.2021.1881509 PMID: 33586590
  158. Dickinson, M.; Briones, J.; Herrera, A.F.; González-Barca, E.; Ghosh, N.; Cordoba, R.; Rutherford, S.C.; Bournazou, E.; Labriola-Tompkins, E.; Franjkovic, I.; Chesne, E.; Brouwer-Visser, J.; Lechner, K.; Brennan, B.; Nüesch, E.; DeMario, M.; Rüttinger, D.; Kornacker, M.; Hutchings, M. Phase 1b study of the BET protein inhibitor RO6870810 with venetoclax and rituximab in patients with diffuse large B-cell lymphoma. Blood Adv., 2021, 5(22), 4762-4770. doi: 10.1182/bloodadvances.2021004619 PMID: 34581757

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers