Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides


Cite item

Full Text

Abstract

Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.

About the authors

Bibi Bazzaz

Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Narjes Goki

Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Zeinab Tehranizadeh

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mohammad Saberi

Department of Medicinal Chemistry, School of Pharmacy,, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Bahman Khameneh

Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. Methods Mol. Biol., 2017, 3-22. doi: 10.1007/978-1-4939-6737-7_1
  2. Dash, R.; Bhattacharjya, S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action. Int. J. Mol. Sci., 2021, 22(4), 1522. doi: 10.3390/ijms22041522 PMID: 33546369
  3. Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314. PMID: 28814242
  4. Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57. doi: 10.1016/j.drup.2016.04.002 PMID: 27180309
  5. Sadelaji, S.; Ghaznavi-Rad, E.; Sadoogh Abbasian, S.; Fahimirad, S.; Abtahi, H. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA). Iran. J. Basic Med. Sci., 2022, 25(2), 232-238. PMID: 35655604
  6. Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics, 2020, 12(6), 501. doi: 10.3390/pharmaceutics12060501 PMID: 32486228
  7. Fathizadeh, H.; Saffari, M.; Esmaeili, D.; Moniri, R.; Salimian, M. Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide. Iran. J. Basic Med. Sci., 2020, 23(11), 1471-1479. PMID: 33235705
  8. Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol., 2019, 431(18), 3547-3567. doi: 10.1016/j.jmb.2018.12.015 PMID: 30611750
  9. Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial peptides: Phylogenic sources and biological activities. First of two parts. Curr. Pharm. Des., 2018, 24(10), 1043-1053. doi: 10.2174/1381612824666180403123736 PMID: 29611476
  10. Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215. doi: 10.1016/j.peptides.2012.07.001 PMID: 22800692
  11. Kaur-Boparai, J.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett., 2020, 27(1), 4-16. doi: 10.2174/18755305MTAwENDE80 PMID: 31438824
  12. Wang, G.; Li, X.; Zasloff, M. A database view of naturally occurring antimicrobial peptides: Nomenclature, classification and amino acid sequence analysis. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2010, pp. 1-21.
  13. Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2017, p. 1.
  14. Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol., 2021, 11, 668632. doi: 10.3389/fcimb.2021.668632 PMID: 34195099
  15. Ageitos, J.M. Sلnchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138. doi: 10.1016/j.bcp.2016.09.018 PMID: 27663838
  16. Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Med. Res. Rev., 2022, 42(4), 1377-1422. doi: 10.1002/med.21879 PMID: 34984699
  17. Drin, G.; Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett., 2010, 584(9), 1840-1847. doi: 10.1016/j.febslet.2009.10.022 PMID: 19837069
  18. Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280(13), 12316-12329. doi: 10.1074/jbc.M413406200 PMID: 15677462
  19. Xiang, N.; Lyu, Y.; Zhu, X.; Bhunia, A.K.; Narsimhan, G. Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity. Peptides, 2017, 94, 10-18. doi: 10.1016/j.peptides.2017.05.010 PMID: 28587835
  20. Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859. doi: 10.1002/med.21542 PMID: 30353555
  21. Stone, T.A.; Cole, G.B.; Ravamehr-Lake, D.; Nguyen, H.Q.; Khan, F.; Sharpe, S.; Deber, C.M. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J. Med. Chem., 2019, 62(13), 6276-6286. doi: 10.1021/acs.jmedchem.9b00657 PMID: 31194548
  22. Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204. doi: 10.3389/fchem.2018.00204 PMID: 29922648
  23. Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297. doi: 10.1093/nar/gkaa991 PMID: 33151284
  24. Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci., 2019, 20(23), 5862. doi: 10.3390/ijms20235862 PMID: 31766730
  25. Sand, S.L.; Nissen-Meyer, J.; Sand, O.; Haug, T.M.; Plantaricin, A. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 249-259. doi: 10.1016/j.bbamem.2012.11.001 PMID: 23142566
  26. Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1551-1555. doi: 10.1016/j.bbamem.2009.01.004
  27. Hirano, M.; Saito, C.; Yokoo, H.; Goto, C.; Kawano, R.; Misawa, T.; Demizu, Y. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules, 2021, 26(2), 444. doi: 10.3390/molecules26020444 PMID: 33466998
  28. Selsted, M.E.; Tang, Y.Q.; Morris, W.L.; McGuire, P.A.; Novotny, M.J.; Smith, W.; Henschen, A.H.; Cullor, J.S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 1993, 268(9), 6641-6648. doi: 10.1016/S0021-9258(18)53298-1 PMID: 8454635
  29. Dhople, V.; Krukemeyer, A.; Ramamoorthy, A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1499-1512. doi: 10.1016/j.bbamem.2006.07.007 PMID: 16978580
  30. Samuelsen, ط.; Haukland, H.H.; Jenssen, H.; Krنmer, M.; Sandvik, K.; Ulvatne, H.; Vorland, L.H. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett., 2005, 579(16), 3421-3426. doi: 10.1016/j.febslet.2005.05.017 PMID: 15946666
  31. Fujikawa, K.; Suketa, Y.; Hayashi, K.; Suzuki, T. Chemical structure of circulin A. Experientia, 1965, 21(6), 307-308. doi: 10.1007/BF02144681 PMID: 4288271
  32. Lambert, J.; Keppi, E.; Dimarcq, J.L.; Wicker, C.; Reichhart, J.M.; Dunbar, B.; Lepage, P.; Van Dorsselaer, A.; Hoffmann, J.; Fothergill, J. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci., 1989, 86(1), 262-266. doi: 10.1073/pnas.86.1.262 PMID: 2911573
  33. Lamberty, M.; Caille, A.; Landon, C.; Tassin-Moindrot, S.; Hetru, C.; Bulet, P.; Vovelle, F. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry, 2001, 40(40), 11995-12003. doi: 10.1021/bi0103563 PMID: 11580275
  34. Tichaczek, P.S.; Vogel, R.F.; Hammes, W.P. Cloning and sequencing of cur A encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch. Microbiol., 1993, 160(4), 279-283. doi: 10.1007/BF00292077 PMID: 7694558
  35. Holck, A.L.; Axelsson, L.; Hühne, K. Krِckel, L. Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol. Lett., 1994, 115(2-3), 143-149. doi: 10.1111/j.1574-6968.1994.tb06629.x PMID: 8138128
  36. Zhu, Q.Z.; Hu, J.; Mulay, S.; Esch, F.; Shimasaki, S.; Solomon, S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc. Natl. Acad. Sci., 1988, 85(2), 592-596. doi: 10.1073/pnas.85.2.592 PMID: 2829194
  37. Eisenhauer, P.B.; Harwig, S.S.; Lehrer, R.I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun., 1992, 60(9), 3556-3565. doi: 10.1128/iai.60.9.3556-3565.1992 PMID: 1500163
  38. Hara, S.; Yamakawa, M. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J., 1995, 310(2), 651-656. doi: 10.1042/bj3100651 PMID: 7654207
  39. Scheenstra, M.R.; van den Belt, M.; Tjeerdsma-van Bokhoven, J.L.M.; Schneider, V.A.F.; Ordonez, S.R.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep., 2019, 9(1), 4780. doi: 10.1038/s41598-019-41246-6 PMID: 30886247
  40. Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296. doi: 10.1038/nrm.2017.138 PMID: 29410529
  41. Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci., 2019, 537, 163-185. doi: 10.1016/j.jcis.2018.10.103 PMID: 30439615
  42. Koppelman, C.M.; Den Blaauwen, T.; Duursma, M.C.; Heeren, R.M.A.; Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol., 2001, 183(20), 6144-6147. doi: 10.1128/JB.183.20.6144-6147.2001 PMID: 11567016
  43. Sharma, S.; Sahoo, N.; Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem., 2015, 16(1), 46-53. doi: 10.2174/1568026615666150703115454 PMID: 26139119
  44. Parchebafi, A.; Tamanaee, F.; Ehteram, H.; Ahmad, E.; Nikzad, H.; Haddad Kashani, H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb. Cell Fact., 2022, 21(1), 118. doi: 10.1186/s12934-022-01848-8 PMID: 35717207
  45. Umnyakova, E.; Orlov, D.; Shamova, O. Peptides and antibiotic resistance, Peptide and Peptidomimetic Therapeutics; Elsevier, 2022, pp. 417-437. doi: 10.1016/B978-0-12-820141-1.00025-X
  46. Chou, H.T.; Wen, H.W.; Kuo, T.Y.; Lin, C.C.; Chen, W.J. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides, 2010, 31(10), 1811-1820. doi: 10.1016/j.peptides.2010.06.021 PMID: 20600422
  47. Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19. doi: 10.1016/j.cub.2015.11.017 PMID: 26766224
  48. Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767. doi: 10.1089/mdr.2017.0392 PMID: 29957118
  49. Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective; Antimicrobial Peptides, 2019, pp. 3-6. doi: 10.1007/978-981-13-3588-4_1
  50. Fillion, M.; Ouellet, M.; Auger, M. Solid-state NMR studies of the interactions and structure of antimicrobial peptides in model membranes, Modern Magnetic Resonance; Springer International Publishing: Cham, 2016, pp. 1-18.
  51. Soares, J.W.; Mello, C.M. Antimicrobial peptides: A review of how peptide structure impacts antimicrobial activity. Monit. Food. Saf. Agricul.Plant. Heal., 2004, 5271, 20-27. doi: 10.1117/12.516171
  52. Ye, Z.; Zhu, X.; Acosta, S.; Kumar, D.; Sang, T.; Aparicio, C. Self-assembly dynamics and antimicrobial activity of all L - and D -amino acid enantiomers of a designer peptide. Nanoscale, 2019, 11(1), 266-275. doi: 10.1039/C8NR07334A PMID: 30534763
  53. Panina, I.; Krylov, N.; Nolde, D.; Efremov, R.; Chugunov, A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Sci. Rep., 2020, 10(1), 8821. doi: 10.1038/s41598-020-65522-y PMID: 32483218
  54. Singh, T.; Choudhary, P.; Singh, S. Antimicrobial Peptides: Mechanism of Action; Insights on Antimicrobial Peptides, 2022, p. 23.
  55. Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci., 2019, 20(19), 4877. doi: 10.3390/ijms20194877 PMID: 31581426
  56. Grein, F.; Schneider, T.; Sahl, H.G. Docking on lipid II—a widespread mechanism for potent bactericidal activities of antibiotic peptides. J. Mol. Biol., 2019, 431(18), 3520-3530. doi: 10.1016/j.jmb.2019.05.014 PMID: 31100388
  57. Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Blaskovich, M.A.T.; Cooper, M.A. Structure–activity and− toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect. Dis., 2017, 3(12), 917-926. doi: 10.1021/acsinfecdis.7b00123 PMID: 28960954
  58. Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes, 2020, 10(8), 181. doi: 10.3390/membranes10080181 PMID: 32784516
  59. Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55. doi: 10.1124/pr.55.1.2 PMID: 12615953
  60. Holdbrook, D.A.; Singh, S.; Choong, Y.K.; Petrlova, J.; Malmsten, M.; Bond, P.J.; Verma, N.K.; Schmidtchen, A.; Saravanan, R. Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2374-2384. doi: 10.1016/j.bbamem.2018.06.002 PMID: 29885294
  61. Huang, H.W. Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1292-1302. doi: 10.1016/j.bbamem.2006.02.001 PMID: 16542637
  62. Hall, K.; Lee, T.H.; Daly, N.L.; Craik, D.J.; Aguilar, M.I. Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. Biochim. Biophys. Acta Biomembr., 2012, 1818(9), 2354-2361. doi: 10.1016/j.bbamem.2012.04.007 PMID: 22538355
  63. Holthuis, J.C.M.; Menon, A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature, 2014, 510(7503), 48-57. doi: 10.1038/nature13474 PMID: 24899304
  64. Breukink, E.; de Kruijff, B. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 223-234. doi: 10.1016/S0005-2736(99)00208-4
  65. Wang, W.; Smith, D.K.; Moulding, K.; Chen, H.M. The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. J. Biol. Chem., 1998, 273(42), 27438-27448. doi: 10.1074/jbc.273.42.27438 PMID: 9765273
  66. Bala, P.; Kumar, J. Antimicrobial peptides: A review. Pharmaceuticals, 2014, 3, 62-71.
  67. Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci., 2017, 247, 521-532. doi: 10.1016/j.cis.2017.06.001 PMID: 28606715
  68. Lee, T-H.; Hall, K.N.; Aguilar, M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39. doi: 10.2174/1568026615666150703121700 PMID: 26139112
  69. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G. Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals, 2021, 14(5), 471. doi: 10.3390/ph14050471 PMID: 34067510
  70. Juretić, D.; Simunić, J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin. Drug Discov., 2019, 14(10), 1053-1063. doi: 10.1080/17460441.2019.1642322 PMID: 31311351
  71. Hu, H.; Di, B.; Tolbert, W.D.; Gohain, N.; Yuan, W.; Gao, P.; Ma, B.; He, Q.; Pazgier, M.; Zhao, L.; Lu, W. Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 835-844. doi: 10.1016/j.bbamem.2019.01.007 PMID: 30658057
  72. Gerlach, S.; Chandra, P.; Roy, U.; Gunasekera, S. Gِransson, U.; Wimley, W.; Braun, S.; Mondal, D. The membrane-active phytopeptide cycloviolacin O2 simultaneously targets HIV-1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Medicines, 2019, 6(1), 33. doi: 10.3390/medicines6010033 PMID: 30823453
  73. Carnicelli, V.; Lizzi, A.; Ponzi, A.; Amicosante, G.; Bozzi, A.; Di Giulio, A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes, Microbial pathogens and strategies for combating them: Science. Technology and Education, 2013, 2, 1123-1134.
  74. Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959. doi: 10.1586/14787210.5.6.951 PMID: 18039080
  75. Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci., 2021, 22(21), 11401. doi: 10.3390/ijms222111401 PMID: 34768832
  76. Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia , 2019, 8, 100494. doi: 10.1016/j.mtla.2019.100494
  77. Matsuzaki, K. Membrane permeabilization mechanisms. Adv. Exp. Med. Biol., 2019, 1117, 9-16.
  78. Eisenberg, M.; Hall, J.E.; Mead, C.A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membr. Biol., 1973, 14(1), 143-176. doi: 10.1007/BF01868075 PMID: 4774545
  79. Wu, Y.; He, K.; Ludtke, S.J.; Huang, H.W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J., 1995, 68(6), 2361-2369. doi: 10.1016/S0006-3495(95)80418-2 PMID: 7647240
  80. Lee, H. Heterodimer and pore formation of magainin 2 and PGLa: The anchoring and tilting of peptides in lipid bilayers. Biochim. Biophys. Acta Biomembr., 2020, 1862(7), 183305. doi: 10.1016/j.bbamem.2020.183305 PMID: 32298679
  81. Perrin, B.S., Jr; Pastor, R.W. Simulations of membrane-disrupting peptides I: Alamethicin pore stability and spontaneous insertion. Biophys. J., 2016, 111(6), 1248-1257. doi: 10.1016/j.bpj.2016.08.014 PMID: 27653483
  82. Perrin, B.S., Jr; Fu, R.; Cotten, M.L.; Pastor, R.W. Simulations of membrane-disrupting peptides II: AMP piscidin 1 favors surface defects over pores. Biophys. J., 2016, 111(6), 1258-1266. doi: 10.1016/j.bpj.2016.08.015 PMID: 27653484
  83. Avci, F.G.; Akbulut, B.S.; Ozkirimli, E. Membrane active peptides and their biophysical characterization. Biomolecules, 2018, 8(3), 77. doi: 10.3390/biom8030077 PMID: 30135402
  84. Pino-Angeles, A.; Lazaridis, T. Effects of peptide charge, orientation, and concentration on melittin transmembrane pores. Biophys. J., 2018, 114(12), 2865-2874. doi: 10.1016/j.bpj.2018.05.006 PMID: 29925023
  85. Zhao, L.; Cao, Z.; Bian, Y.; Hu, G.; Wang, J.; Zhou, Y. Molecular dynamics simulations of human antimicrobial peptide LL-37 in model POPC and POPG lipid bilayers. Int. J. Mol. Sci., 2018, 19(4), 1186. doi: 10.3390/ijms19041186 PMID: 29652823
  86. Henzler Wildman, K.A.; Lee, D.K.; Ramamoorthy, A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 2003, 42(21), 6545-6558. doi: 10.1021/bi0273563 PMID: 12767238
  87. Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4. doi: 10.3390/biom8010004 PMID: 29351202
  88. Nielsen, J.E.; Lind, T.K.; Lone, A.; Gerelli, Y.; Hansen, P.R.; Jenssen, H. Cلrdenas, M.; Lund, R. A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Biochim. Biophys. Acta Biomembr., 2019, 1861(7), 1355-1364. doi: 10.1016/j.bbamem.2019.04.003 PMID: 30978313
  89. Takahashi, T.; Kulkarni, N.N.; Lee, E.Y.; Zhang, L.; Wong, G.C.L.; Gallo, R.L. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci. Rep., 2018, 8(1), 4032. doi: 10.1038/s41598-018-22409-3 PMID: 29507358
  90. Ciumac, D. Investigation of Interaction of Antimicrobial Peptides with Lipid Monolayers; University of Manchester, 2018.
  91. Sierra, J.M. Viٌas, M. Future prospects for Antimicrobial peptide development: Peptidomimetics and antimicrobial combinations. Expert Opin. Drug Discov., 2021, 16(6), 601-604. doi: 10.1080/17460441.2021.1892072 PMID: 33626997
  92. Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol., 2018, 48, 179-194. doi: 10.1016/j.ifset.2018.06.008
  93. Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press Inc., 2018, pp. 359-384.
  94. Velasco-Bolom, J.L. Garduٌo-Juلrez, R. Computational studies of membrane pore formation induced by Pin2. J. Biomol. Struct. Dyn., 2022, 40(11), 5060-5068. doi: 10.1080/07391102.2020.1867640 PMID: 33397200
  95. Leontiadou, H.; Mark, A.E.; Marrink, S.J. Antimicrobial peptides in action. J. Am. Chem. Soc., 2006, 128(37), 12156-12161. doi: 10.1021/ja062927q PMID: 16967965
  96. Cardoso, M.H.; Ribeiro, S.M.; Nolasco, D.O. de la Fuente-Nٌْez, C.; Felيcio, M.R.; Gonçalves, S.; Matos, C.O.; Liao, L.M.; Santos, N.C.; Hancock, R.E.W.; Franco, O.L.; Migliolo, L. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci. Rep., 2016, 6(1), 21385. doi: 10.1038/srep21385 PMID: 26916401
  97. Aronica, P.G.A.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Essex, J.W.; Verma, C.S. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model., 2021, 61(7), 3172-3196. doi: 10.1021/acs.jcim.1c00175 PMID: 34165973
  98. Poger, D.; Caron, B.; Mark, A.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochim. Biophys. Acta Biomembr., 2016, 1858(7), 1556-1565. doi: 10.1016/j.bbamem.2016.01.029 PMID: 26850737
  99. Bennett, W.F.D.; Hong, C.K.; Wang, Y.; Tieleman, D.P. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput., 2016, 12(9), 4524-4533. doi: 10.1021/acs.jctc.6b00265 PMID: 27529120
  100. Zhou, L.; Narsimhan, G.; Wu, X.; Du, F. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin. Colloids Surf. B Biointerfaces, 2014, 123, 419-428. doi: 10.1016/j.colsurfb.2014.09.037 PMID: 25306255
  101. Bechinger, B. Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol., 1997, 156(3), 197-211. doi: 10.1007/s002329900201 PMID: 9096062
  102. Koller, D.; Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2250-2259. doi: 10.1016/j.bbamem.2014.05.013 PMID: 24853655
  103. Strِmstedt, A.A.; Ringstad, L.; Schmidtchen, A.; Malmsten, M. Interaction between amphiphilic peptides and phospholipid membranes. Curr. Opin. Colloid Interface Sci., 2010, 15(6), 467-478. doi: 10.1016/j.cocis.2010.05.006
  104. Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. Chapter Ten: The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press, 2018, pp. 359-384.
  105. Shagaghi, N.; Palombo, E.A.; Clayton, A.H.A.; Bhave, M. Antimicrobial peptides: Biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J. Microbiol. Biotechnol., 2018, 34(4), 62. doi: 10.1007/s11274-018-2444-5 PMID: 29651655
  106. Abbas, N.; Tan, H.D.; Goh, B.H.; Yap, W.H.; Tang, Y.Q. In Silico study of anticancer and antimicrobial peptides derived from cycloviolacin O2 (CyO2). Biointerface Res. Appl. Chem., 2023, 13.
  107. Aliste, M.P.; MacCallum, J.L.; Tieleman, D.P. Molecular dynamics simulations of pentapeptides at interfaces: Salt bridge and cation-pi interactions. Biochemistry, 2003, 42(30), 8976-8987. doi: 10.1021/bi027001j PMID: 12885230
  108. Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1184-1202. doi: 10.1016/j.bbamem.2006.04.006 PMID: 16756942
  109. Sd, S.; Le, C.F.; Mohd Yusof, M.Y.; Sekaran, S.D. Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. J. Heal. Translat. Med., 2014, 17(1), 1-7. doi: 10.22452/jummec.vol17no1.1
  110. Borah, A.; Deb, B.; Chakraborty, S. A crosstalk on antimicrobial peptides. Int. J. Pept. Res. Ther., 2021, 27(1), 229-244. doi: 10.1007/s10989-020-10075-x
  111. Koehbach, J.; Craik, D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci., 2019, 40(7), 517-528. doi: 10.1016/j.tips.2019.04.012 PMID: 31230616
  112. Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M. Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry, 2006, 45(2), 468-480. doi: 10.1021/bi051711i PMID: 16401077
  113. Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1687-1692. doi: 10.1016/j.bbamem.2008.09.013
  114. Toke, O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers, 2005, 80(6), 717-735. doi: 10.1002/bip.20286 PMID: 15880793
  115. Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther., 2020, 26(3), 1451-1463. doi: 10.1007/s10989-019-09946-9
  116. Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171. doi: 10.3109/07388551.2011.594423 PMID: 22074402
  117. Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1582-1592. doi: 10.1016/j.bbamem.2008.10.020 PMID: 19028449
  118. Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W.L.; MacDonald, D.L.; Beyermann, M.; Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett., 1997, 403(2), 208-212. doi: 10.1016/S0014-5793(97)00055-0 PMID: 9042968
  119. Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622. doi: 10.1021/bi960835f PMID: 8823199
  120. Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600. doi: 10.1046/j.1432-1033.2001.02494.x PMID: 11683882
  121. Luo, X.; Ouyang, J.; Wang, Y.; Zhang, M.; Fu, L.; Xiao, N.; Gao, L.; Zhang, P.; Zhou, J.; Wang, Y. A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie, 2021, 191, 37-50. doi: 10.1016/j.biochi.2021.08.007 PMID: 34438004
  122. Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res., 2021, 8(1), 48. doi: 10.1186/s40779-021-00343-2 PMID: 34496967
  123. Fry, D.E. Antimicrobial peptides. Surg. Infect., 2018, 19(8), 804-811. doi: 10.1089/sur.2018.194 PMID: 30265592
  124. Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73. doi: 10.3389/fnins.2017.00073 PMID: 28261050
  125. Matsuzaki, K.; Nakamura, A.; Murase, O.; Sugishita, K.; Fujii, N.; Miyajima, K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997, 36(8), 2104-2111. doi: 10.1021/bi961870p PMID: 9047309
  126. Bechinger, B. Structure and function of membrane-lytic peptides. Crit. Rev. Plant Sci., 2004, 23(3), 271-292. doi: 10.1080/07352680490452825
  127. Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96. doi: 10.1016/j.cbpa.2017.03.014 PMID: 28399505
  128. Maturana, P.; Martinez, M.; Noguera, M.E.; Santos, N.C.; Disalvo, E.A.; Semorile, L.; Maffia, P.C.; Hollmann, A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf. B Biointerfaces, 2017, 153, 152-159. doi: 10.1016/j.colsurfb.2017.02.003 PMID: 28236791
  129. White, S.H.; Wimley, W.C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr., 1998, 1376(3), 339-352. doi: 10.1016/S0304-4157(98)00021-5 PMID: 9804985
  130. Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406. doi: 10.1128/AAC.00925-06 PMID: 17158938
  131. Leal, E. Mْnera, M.; Suescْn-Bolيvar, L.P. In silico characterization of Cnidarian’s antimicrobial peptides. Front. Mar. Sci., 2022, 9, 1065717. doi: 10.3389/fmars.2022.1065717
  132. Bobone, S.; Stella, L. Selectivity of antimicrobial peptides: A complex interplay of multiple equilibria Antimicrob. peptid., 2019, 175-214.
  133. Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423. doi: 10.1016/j.bbamem.2018.03.021 PMID: 29621496
  134. Domingues, T.M.; Perez, K.R.; Riske, K.A. Revealing the mode of action of halictine antimicrobial peptides: A comprehensive study with model membranes. Langmuir, 2020, 36(19), 5145-5155. doi: 10.1021/acs.langmuir.0c00282 PMID: 32336099
  135. Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic α-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083. doi: 10.1016/S0006-3495(00)76455-1 PMID: 11023911
  136. Yount, N.; Yeaman, M. Immunocontinuum: Perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept. Lett., 2005, 12(1), 49-67. doi: 10.2174/0929866053405959 PMID: 15638803
  137. Gomes, I.P.; Santos, T.L.; de Souza, A.N.; Nunes, L.O.; Cardoso, G.A.; Matos, C.O.; Costa, L.M.F. Liمo, L.M.; Resende, J.M.; Verly, R.M. Membrane interactions of the anuran antimicrobial peptide HSP1-NH2: Different aspects of the association to anionic and zwitterionic biomimetic systems. Biochim. Biophys. Acta Biomembr., 2021, 1863(1), 183449. doi: 10.1016/j.bbamem.2020.183449 PMID: 32828849
  138. Pedron, C.N.; Torres, M.D.T.; Lima, J.A.S.; Silva, P.I.; Silva, F.D.; Oliveira, V.X. Novel designed VmCT1 analogs with increased antimicrobial activity. Eur. J. Med. Chem., 2017, 126, 456-463. doi: 10.1016/j.ejmech.2016.11.040 PMID: 27912176
  139. Abraham, P.; Sundaram, A. A.R, R. V; George, S.; Kumar, K.S. Structure-activity relationship and mode of action of a frog secreted antibacterial peptide B1CTcu5 using synthetically and modularly modified or deleted (SMMD) peptides. PLoS One, 2015, 10, e0124210. doi: 10.1371/journal.pone.0124210 PMID: 25997127
  140. Cashman-Kadri, S.; Lagüe, P.; Fliss, I.; Beaulieu, L. Determination of the relationships between the chemical structure and antimicrobial activity of a GAPDH-related fish antimicrobial peptide and analogs thereof. Antibiotics , 2022, 11(3), 297. doi: 10.3390/antibiotics11030297 PMID: 35326761
  141. Lorin, C.; Saidi, H.; Belaid, A.; Zairi, A.; Baleux, F.; Hocini, H.; Bélec, L.; Hani, K.; Tangy, F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005, 334(2), 264-275. doi: 10.1016/j.virol.2005.02.002 PMID: 15780876
  142. Liu, Y.; Du, Q.; Ma, C.; Xi, X.; Wang, L.; Zhou, M.; Burrows, J.F.; Chen, T.; Wang, H. Structure–activity relationship of an antimicrobial peptide, Phylloseptin-PHa: Balance of hydrophobicity and charge determines the selectivity of bioactivities. Drug Des. Devel. Ther., 2019, 13, 447-458. doi: 10.2147/DDDT.S191072 PMID: 30774309
  143. Hollmann, A. Martيnez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffيa, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536. doi: 10.1016/j.colsurfb.2016.02.003 PMID: 26896660
  144. Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2012, 1818(5), 1274-1283. doi: 10.1016/j.bbamem.2012.01.016 PMID: 22290189
  145. Schweigardt, F.; Strandberg, E.; Wadhwani, P.; Reichert, J.; Bürck, J.; Cravo, H.L.P.; Burger, L.; Ulrich, A.S. Membranolytic mechanism of amphiphilic antimicrobial β-stranded KLn Peptides. Biomedicines, 2022, 10(9), 2071. doi: 10.3390/biomedicines10092071 PMID: 36140173
  146. Wang, G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics, 2020, 9(8), 491. doi: 10.3390/antibiotics9080491 PMID: 32784626
  147. Chou, H.T.; Kuo, T.Y.; Chiang, J.C.; Pei, M.J.; Yang, W.T.; Yu, H.C.; Lin, S.B.; Chen, W.J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob. Agents, 2008, 32(2), 130-138. doi: 10.1016/j.ijantimicag.2008.04.003 PMID: 18586467
  148. Strandberg, E.; Bentz, D.; Wadhwani, P.; Bürck, J.; Ulrich, A.S. Terminal charges modulate the pore forming activity of cationic amphipathic helices. Biochim. Biophys. Acta Biomembr., 2020, 1862(4), 183243. doi: 10.1016/j.bbamem.2020.183243 PMID: 32126225
  149. Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 2017, 56(11), 1680-1695. doi: 10.1021/acs.biochem.6b01071 PMID: 28282123
  150. Yan, H.; Li, S.; Sun, X.; Mi, H.; He, B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett., 2003, 554(1-2), 100-104. doi: 10.1016/S0014-5793(03)01113-X PMID: 14596922
  151. Mangmee, S.; Reamtong, O.; Kalambaheti, T.; Roytrakul, S.; Sonthayanon, P. Antimicrobial peptide modifications against clinically isolated antibiotic-resistant salmonella. Molecules, 2021, 26(15), 4654. doi: 10.3390/molecules26154654 PMID: 34361810
  152. Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine, 2020, 55, 102775. doi: 10.1016/j.ebiom.2020.102775 PMID: 32403086
  153. Krause, E.; Bienert, M.; Schmieder, P.; Wenschuh, H. The helix-destabilizing propensity scale of D -amino acids: The influence of side chain steric effects. J. Am. Chem. Soc., 2000, 122(20), 4865-4870. doi: 10.1021/ja9940524

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers