LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress
- 作者: Lv N.1, Zhang Y.1, Wang L.1, Suo Y.2, Zeng W.3, Yu Q.1, Yu B.4, Jiang X.1
-
隶属关系:
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
- Traditional Chinese Medicine Department, Ganzhou Peoples Hospital
- Oncology Department, Ganzhou Peoples Hospita
- School of Medial Technology, Tianjin University of Traditional Chinese Medicine
- 期: 卷 25, 编号 8 (2024)
- 页面: 1021-1040
- 栏目: Biotechnology
- URL: https://vestnik-pp.samgtu.ru/1389-2010/article/view/644940
- DOI: https://doi.org/10.2174/0113892010267577231005102901
- ID: 644940
如何引用文章
全文:
详细
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
关键词
作者简介
Nuan Lv
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yilin Zhang
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Luming Wang
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yanrong Suo
Traditional Chinese Medicine Department, Ganzhou Peoples Hospital
Email: info@benthamscience.net
Wenyun Zeng
Oncology Department, Ganzhou Peoples Hospita
Email: info@benthamscience.net
Qun Yu
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Bin Yu
School of Medial Technology, Tianjin University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xijuan Jiang
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. 2021. Available from: who.int/publications/i/item/9789240027053
- Ben, J.; Jiang, B.; Wang, D.; Liu, Q.; Zhang, Y.; Qi, Y.; Tong, X.; Chen, L.; Liu, X.; Zhang, Y.; Zhu, X.; Li, X.; Zhang, H.; Bai, H.; Yang, Q.; Ma, J.; Wiemer, E.A.C.; Xu, Y.; Chen, Q. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKKNF-κB signaling mediated inflammation. Nat. Commun., 2019, 10(1), 1801. doi: 10.1038/s41467-019-09588-x PMID: 30996248
- Gillrie, M.R.; Krishnegowda, G.; Lee, K.; Buret, A.G.; Robbins, S.M.; Looareesuwan, S.; Gowda, D.C.; Ho, M. Src-family kinasedependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood, 2007, 110(9), 3426-3435. doi: 10.1182/blood-2007-04-084582 PMID: 17693580
- Joshi, A.A.; Lerman, J.B.; Dey, A.K.; Sajja, A.P.; Belur, A.D.; Elnabawi, Y.A.; Rodante, J.A.; Aberra, T.M.; Chung, J.; Salahuddin, T.; Natarajan, B.; Dave, J.; Goyal, A.; Groenendyk, J.W.; Rivers, J.P.; Baumer, Y.; Teague, H.L.; Playford, M.P.; Bluemke, D.A.; Ahlman, M.A.; Chen, M.Y.; Gelfand, J.M.; Mehta, N.N. Association between aortic vascular inflammation and coronary artery plaque characteristics in psoriasis. JAMA Cardiol., 2018, 3(10), 949-956. doi: 10.1001/jamacardio.2018.2769 PMID: 30208407
- Wang, Z.T.; Wang, Z.; Hu, Y.W. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 2016, 248, 10-16. doi: 10.1016/j.atherosclerosis.2016.03.004 PMID: 26978582
- Stauss, R.D.; Grosse, G.M.; Neubert, L.; Falk, C.S.; Jonigk, D.; Kühnel, M.P.; Gabriel, M.M.; Schuppner, R.; Lichtinghagen, R.; Wilhelmi, M.; Weissenborn, K.; Schrimpf, C. Distinct systemic cytokine networks in symptomatic and asymptomatic carotid stenosis. Sci. Rep., 2020, 10(1), 21963. doi: 10.1038/s41598-020-78941-8 PMID: 33319833
- Li, X.; Guo, D.; Chen, Y.; Hu, Y.; Zhang, F. Effects of altered levels of pro- and anti-inflammatory mediators on locations of in-stent reocclusions in elderly patients. Mediators Inflamm., 2020, 2020, 1-12. doi: 10.1155/2020/1719279 PMID: 33029103
- Bäck, M.; Yurdagul, A., Jr; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol., 2019, 16(7), 389-406. doi: 10.1038/s41569-019-0169-2 PMID: 30846875
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131. doi: 10.1056/NEJMoa1707914 PMID: 28845751
- Vahdat-Lasemi, F.; Aghaee-Bakhtiari, S.H.; Tasbandi, A.; Jaafari, M.R.; Sahebkar, A. Targeting interleukin‐β by plant‐derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother. Res., 2021, 35(10), 5596-5622. doi: 10.1002/ptr.7194 PMID: 34390063
- Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; Kodzius, R.; Shimokawa, K.; Bajic, V.B.; Brenner, S.E.; Batalov, S.; Forrest, A.R.R.; Zavolan, M.; Davis, M.J.; Wilming, L.G.; Aidinis, V.; Allen, J.E.; Ambesi-Impiombato, A.; Apweiler, R.; Aturaliya, R.N.; Bailey, T.L.; Bansal, M.; Baxter, L.; Beisel, K.W.; Bersano, T.; Bono, H.; Chalk, A.M.; Chiu, K.P.; Choudhary, V.; Christoffels, A.; Clutterbuck, D.R.; Crowe, M.L.; Dalla, E.; Dalrymple, B.P.; de Bono, B.; Gatta, G.D.; di Bernardo, D.; Down, T.; Engstrom, P.; Fagiolini, M.; Faulkner, G.; Fletcher, C.F.; Fukushima, T.; Furuno, M.; Futaki, S.; Gariboldi, M.; Georgii-Hemming, P.; Gingeras, T.R.; Gojobori, T.; Green, R.E.; Gustincich, S.; Harbers, M.; Hayashi, Y.; Hensch, T.K.; Hirokawa, N.; Hill, D.; Huminiecki, L.; Iacono, M.; Ikeo, K.; Iwama, A.; Ishikawa, T.; Jakt, M.; Kanapin, A.; Katoh, M.; Kawasawa, Y.; Kelso, J.; Kitamura, H.; Kitano, H.; Kollias, G.; Krishnan, S.P.T.; Kruger, A.; Kummerfeld, S.K.; Kurochkin, I.V.; Lareau, L.F.; Lazarevic, D.; Lipovich, L.; Liu, J.; Liuni, S.; McWilliam, S.; Babu, M.M.; Madera, M.; Marchionni, L.; Matsuda, H.; Matsuzawa, S.; Miki, H.; Mignone, F.; Miyake, S.; Morris, K.; Mottagui-Tabar, S.; Mulder, N.; Nakano, N.; Nakauchi, H.; Ng, P.; Nilsson, R.; Nishiguchi, S.; Nishikawa, S.; Nori, F.; Ohara, O.; Okazaki, Y.; Orlando, V.; Pang, K.C.; Pavan, W.J.; Pavesi, G.; Pesole, G.; Petrovsky, N.; Piazza, S.; Reed, J.; Reid, J.F.; Ring, B.Z.; Ringwald, M.; Rost, B.; Ruan, Y.; Salzberg, S.L.; Sandelin, A.; Schneider, C.; Schönbach, C.; Sekiguchi, K.; Semple, C.A.M.; Seno, S.; Sessa, L.; Sheng, Y.; Shibata, Y.; Shimada, H.; Shimada, K.; Silva, D.; Sinclair, B.; Sperling, S.; Stupka, E.; Sugiura, K.; Sultana, R.; Takenaka, Y.; Taki, K.; Tammoja, K.; Tan, S.L.; Tang, S.; Taylor, M.S.; Tegner, J.; Teichmann, S.A.; Ueda, H.R.; van Nimwegen, E.; Verardo, R.; Wei, C.L.; Yagi, K.; Yamanishi, H.; Zabarovsky, E.; Zhu, S.; Zimmer, A.; Hide, W.; Bult, C.; Grimmond, S.M.; Teasdale, R.D.; Liu, E.T.; Brusic, V.; Quackenbush, J.; Wahlestedt, C.; Mattick, J.S.; Hume, D.A.; Kai, C.; Sasaki, D.; Tomaru, Y.; Fukuda, S.; Kanamori-Katayama, M.; Suzuki, M.; Aoki, J.; Arakawa, T.; Iida, J.; Imamura, K.; Itoh, M.; Kato, T.; Kawaji, H.; Kawagashira, N.; Kawashima, T.; Kojima, M.; Kondo, S.; Konno, H.; Nakano, K.; Ninomiya, N.; Nishio, T.; Okada, M.; Plessy, C.; Shibata, K.; Shiraki, T.; Suzuki, S.; Tagami, M.; Waki, K.; Watahiki, A.; Okamura-Oho, Y.; Suzuki, H.; Kawai, J.; Hayashizaki, Y. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740), 1559-1563. doi: 10.1126/science.1112014 PMID: 16141072
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA Translation and Stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379. doi: 10.1146/annurev-biochem-060308-103103 PMID: 20533884
- Janas, M.M.; Wang, B.; Harris, A.S.; Aguiar, M.; Shaffer, J.M.; Subrahmanyam, Y.V.B.K.; Behlke, M.A.; Wucherpfennig, K.W.; Gygi, S.P.; Gagnon, E.; Novina, C.D. Alternative RISC assembly: Binding and repression of microRNAmRNA duplexes by human Ago proteins. RNA, 2012, 18(11), 2041-2055. doi: 10.1261/rna.035675.112 PMID: 23019594
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045. doi: 10.1083/jcb.202009045 PMID: 33464299
- Denzler, R.; Agarwal, V.; Stefano, J.; Bartel, D.P.; Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell, 2014, 54(5), 766-776. doi: 10.1016/j.molcel.2014.03.045 PMID: 24793693
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691. doi: 10.1038/s41576-019-0158-7 PMID: 31395983
- Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490. doi: 10.1038/s41580-020-0243-y PMID: 32366901
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3), 353-358. doi: 10.1016/j.cell.2011.07.014 PMID: 21802130
- Navarro, E.; Mallén, A.; Cruzado, J.M.; Torras, J.; Hueso, M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin. Transl. Med., 2020, 9(1), 5. doi: 10.1186/s40169-020-0256-3 PMID: 32009226
- Martens, C.R.; Bansal, S.S.; Accornero, F. Cardiovascular inflammation: RNA takes the lead. J. Mol. Cell. Cardiol., 2019, 129, 247-256. doi: 10.1016/j.yjmcc.2019.03.012 PMID: 30880251
- Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636. doi: 10.1161/CIRCRESAHA.115.306301 PMID: 26892962
- Jaffe, I.Z.; Jaisser, F. Endothelial cell mineralocorticoid receptors: turning cardiovascular risk factors into cardiovascular dysfunction. Hypertension, 2014, 63(5), 915-917. doi: 10.1161/HYPERTENSIONAHA.114.01997 PMID: 24566083
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; Picano, E.; Cortigiani, L.; Bevilacqua, M.; Milazzo, L.; Cusi, D.; Barlassina, C.; Sarzi-Puttini, P.; Turiel, M. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev., 2010, 9(12), 830-834. doi: 10.1016/j.autrev.2010.07.016 PMID: 20678595
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J. Parenter. Enteral Nutr., 2019, 43(2), 181-193. doi: 10.1002/jpen.1451 PMID: 30288759
- Khwaja, B.; Thankam, F.G.; Agrawal, D.K. Mitochondrial DAMPs and altered mitochondrial dynamics in OxLDL burden in atherosclerosis. Mol. Cell. Biochem., 2021, 476(4), 1915-1928. doi: 10.1007/s11010-021-04061-0 PMID: 33492610
- Giddens, D.P.; Zarins, C.K.; Glagov, S. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng., 1993, 115(4B), 588-594. doi: 10.1115/1.2895545 PMID: 8302046
- Zhou, J.; Li, Y.S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol., 2014, 34(10), 2191-2198. doi: 10.1161/ATVBAHA.114.303422 PMID: 24876354
- Sweet, D.R.; Fan, L.; Hsieh, P.N.; Jain, M.K. Krüppel-like factors in vascular inflammation: Mechanistic insights and therapeutic potential. Front. Cardiovasc. Med., 2018, 5, 6. doi: 10.3389/fcvm.2018.00006 PMID: 29459900
- Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol. Sci., 2019, 40(4), 253-266. doi: 10.1016/j.tips.2019.02.004 PMID: 30826122
- Mun, G.I.; Boo, Y.C. A regulatory role of Kruppel-like factor 4 in endothelial argininosuccinate synthetase 1 expression in response to laminar shear stress. Biochem. Biophys. Res. Commun., 2012, 420(2), 450-455. doi: 10.1016/j.bbrc.2012.03.016 PMID: 22430140
- Shan, K.; Jiang, Q.; Wang, X.Q.; Wang, Y.N.Z.; Yang, H.; Yao, M.D.; Liu, C.; Li, X.M.; Yao, J.; Liu, B.; Zhang, Y.Y. J, Y.; Yan, B. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis., 2016, 7(6), e2248. doi: 10.1038/cddis.2016.145 PMID: 27253412
- Lu, Q.; Meng, Q.; Qi, M.; Li, F.; Liu, B. Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension, 2019, 73(5), e25-e34. doi: 10.1161/HYPERTENSIONAHA.118.12476 PMID: 30905197
- Mukovozov, I.; Huang, Y.W.; Zhang, Q.; Liu, G.Y.; Siu, A.; Sokolskyy, Y.; Patel, S.; Hyduk, S.J.; Kutryk, M.J.B.; Cybulsky, M.I.; Robinson, L.A. The neurorepellent slit2 inhibits postadhesion stabilization of monocytes tethered to vascular endothelial cells. J. Immunol., 2015, 195(7), 3334-3344. doi: 10.4049/jimmunol.1500640 PMID: 26297762
- Zhao, H.; Anand, A.R.; Ganju, R.K. Slit2-Robo4 pathway modulates lipopolysaccharide-induced endothelial inflammation and its expression is dysregulated during endotoxemia. J. Immunol., 2014, 192(1), 385-393. doi: 10.4049/jimmunol.1302021 PMID: 24272999
- Li, S.; Huang, T.; Qin, L.; Yin, L. Circ_0068087 silencing ameliorates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells depending on mir-186-5p-mediated regulation of roundabout guidance receptor 1. Front. Cardiovasc. Med., 2021, 8, 650374. doi: 10.3389/fcvm.2021.650374 PMID: 34124191
- Zhang, Y.; Li, W.; Li, H.; Zhou, M.; Zhang, J.; Fu, Y.; Zhang, C.; Sun, X. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis. J. Cardiovasc. Pharmacol., 2021, 78(5), e761-e772. doi: 10.1097/FJC.0000000000001124 PMID: 34369900
- Rochette, L.; Lorin, J.; Zeller, M.; Guilland, J.C.; Lorgis, L.; Cottin, Y.; Vergely, C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol. Ther., 2013, 140(3), 239-257. doi: 10.1016/j.pharmthera.2013.07.004 PMID: 23859953
- Munro, J.M.; Cotran, R.S. The pathogenesis of atherosclerosis: Atherogenesis and inflammation. Lab. Invest., 1988, 58(3), 249-261. PMID: 3279259
- Jaipersad, A.S.; Lip, G.Y.H.; Silverman, S.; Shantsila, E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol., 2014, 63(1), 1-11. doi: 10.1016/j.jacc.2013.09.019 PMID: 24140662
- Peng, K.; Jiang, P.; Du, Y.; Zeng, D.; Zhao, J.; Li, M.; Xia, C.; Xie, Z.; Wu, J. Oxidized low‐density lipoprotein accelerates the injury of endothelial cells via CIRC‐USP36/MIR ‐98‐5p/VCAM1 axis. IUBMB Life, 2021, 73(1), 177-187. doi: 10.1002/iub.2419 PMID: 33249762
- Zhang, D.; Zhang, G.; Yu, K.; Zhang, X.; Jiang, A. Circ_0003204 knockdown protects endothelial cells against oxidized low-density lipoprotein-induced injuries by targeting the miR-491-5p-ICAM1 pathway. J. Thromb. Thrombolysis, 2022, 53(2), 302-312. doi: 10.1007/s11239-021-02606-0 PMID: 34797473
- Lamb, D.J.; Modjtahedi, H.; Plant, N.J.; Ferns, G.A.A. EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis, 2004, 176(1), 21-26. doi: 10.1016/j.atherosclerosis.2004.04.012 PMID: 15306170
- Xiong, F.; Mao, R.; Zhang, L.; Zhao, R.; Tan, K.; Liu, C.; Xu, J.; Du, G.; Zhang, T. CircNPHP4 in monocyte-derived small extracellular vesicles controls heterogeneous adhesion in coronary heart atherosclerotic disease. Cell Death Dis., 2021, 12(10), 948. doi: 10.1038/s41419-021-04253-y PMID: 34650036
- Dunaway, L.S.; Pollock, J.S. HDAC1: an environmental sensor regulating endothelial function. Cardiovasc. Res., 2022, 118(8), 1885-1903. doi: 10.1093/cvr/cvab198 PMID: 34264338
- Zhang, X.; Lu, J.; Zhang, Q.; Luo, Q.; Liu, B. CircRNA RSF1 regulated ox-LDL induced vascular endothelial cells proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in atherosclerosis. Biol. Res., 2021, 54(1), 11. doi: 10.1186/s40659-021-00335-5 PMID: 33757583
- Seccia, T.M.; Rigato, M.; Ravarotto, V.; Calò, L.A. ROCK (RhoA/Rho Kinase) in cardiovascularrenal pathophysiology: A review of new advancements. J. Clin. Med., 2020, 9(5), 1328. doi: 10.3390/jcm9051328 PMID: 32370294
- Noma, K.; Oyama, N.; Liao, J.K. Physiological role of ROCKs in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2006, 290(3), C661-C668. doi: 10.1152/ajpcell.00459.2005 PMID: 16469861
- Shan, H.; Guo, D.; Zhang, S.; Qi, H.; Liu, S.; Du, Y.; He, Y.; Wang, B.; Xu, M.; Yu, X. RETRACTED ARTICLE: SNHG6 modulates oxidized low-density lipoprotein-induced endothelial cells injury through miR-135a-5p/ROCK in atherosclerosis. Cell Biosci., 2020, 10(1), 4. doi: 10.1186/s13578-019-0371-2 PMID: 31921409
- Shimada, H.; Rajagopalan, L.E. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65. J. Biol. Chem., 2010, 285(17), 12536-12542. doi: 10.1074/jbc.M109.099630 PMID: 20164172
- Miao, J.; Wang, B.; Shao, R.; Wang, Y. CircUSP36 knockdown alleviates oxidized low density lipoprotein induced cell injury and inflammatory responses in human umbilical vein endothelial cells via the miR 20a 5p/ROCK2 axis. Int. J. Mol. Med., 2021, 47(4), 40. doi: 10.3892/ijmm.2021.4873 PMID: 33576448
- Li, X.; Kang, X.; Di, Y.; Sun, S.; Yang, L.; Wang, B.; Ji, Z. CircCHMP5 contributes to Ox-LDL-induced endothelial cell injury through the regulation of MiR-532-5p/ROCK2 axis. Cardiovasc. Drugs Ther., 2022. doi: 10.1007/s10557-022-07316-0
- Li, L.; Du, Z.; Rong, B.; Zhao, D.; Wang, A.; Xu, Y.; Zhang, H.; Bai, X.; Zhong, J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci. Rep., 2020, 40(1), BSR20193267. doi: 10.1042/BSR20193267 PMID: 31894855
- Su, G.; Sun, G.; Lv, J.; Zhang, W.; Liu, H.; Tang, Y.; Su, H. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis. BMC Cardiovasc. Disord., 2021, 21(1), 221. doi: 10.1186/s12872-021-01998-4 PMID: 33932991
- Chen, G.; Ward, M.F.; Sama, A.E.; Wang, H. Extracellular HMGB1 as a proinflammatory cytokine. J. Interferon Cytokine Res., 2004, 24(6), 329-333. doi: 10.1089/107999004323142187 PMID: 15212706
- Calderon-Pelaez, M.A.; Coronel-Ruiz, C.; Castellanos, J.E.; Velandia-Romero, M.L. Endothelial dysfunction, HMGB1, and dengue: An enigma to solve Viruses-Basel., 2022, 14(8)
- van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis, 2008, 11(1), 91-99. doi: 10.1007/s10456-008-9093-5 PMID: 18264787
- Yang, J.; Huang, C.; Yang, J.; Jiang, H.; Ding, J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: A key role for TLR4/NF-κB signaling pathway. Mol. Cell. Biochem., 2010, 345(1-2), 189-195. doi: 10.1007/s11010-010-0572-9 PMID: 20714791
- Zheng, Z.; Zhang, G.; Liang, X.; Li, T. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol. Cell. Biochem., 2021, 476(1), 443-455. doi: 10.1007/s11010-020-03921-5 PMID: 32990894
- Umahara, T.; Uchihara, T.; Hirao, K.; Shimizu, S.; Hashimoto, T.; Kohno, M.; Hanyu, H. Essential autophagic protein Beclin 1 localizes to atherosclerotic lesions of human carotid and major intracranial arteries. J. Neurol. Sci., 2020, 414, 116836. doi: 10.1016/j.jns.2020.116836 PMID: 32344218
- Dong, G.; Yang, S.; Cao, X.; Yu, N.; Yu, J.; Qu, X. Low shear stress-induced autophagy alleviates cell apoptosis in HUVECs. Mol. Med. Rep., 2017, 15(5), 3076-3082. doi: 10.3892/mmr.2017.6401 PMID: 28350133
- Meng, Q.; Pu, L.; Qi, M.; Li, S.; Sun, B.; Wang, Y.; Liu, B.; Li, F. Laminar shear stress inhibits inflammation by activating autophagy in human aortic endothelial cells through HMGB1 nuclear translocation. Commun. Biol., 2022, 5(1), 425. doi: 10.1038/s42003-022-03392-y PMID: 35523945
- Landry, N.M.; Cohen, S.; Dixon, I.M.C. Periostin in cardiovascular disease and development: A tale of two distinct roles. Basic Res. Cardiol., 2018, 113(1), 1. doi: 10.1007/s00395-017-0659-5 PMID: 29101484
- Schwanekamp, J.A.; Lorts, A.; Vagnozzi, R.J.; Vanhoutte, D.; Molkentin, J.D. Deletion of periostin protects against atherosclerosis in mice by altering inflammation and extracellular matrix remodeling. Arterioscler. Thromb. Vasc. Biol., 2016, 36(1), 60-68. doi: 10.1161/ATVBAHA.115.306397 PMID: 26564821
- Hakuno, D.; Kimura, N.; Yoshioka, M.; Mukai, M.; Kimura, T.; Okada, Y.; Yozu, R.; Shukunami, C.; Hiraki, Y.; Kudo, A.; Ogawa, S.; Fukuda, K. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J. Clin. Invest., 2010, 120(7), 2292-2306. doi: 10.1172/JCI40973 PMID: 20551517
- Cao, L.; Zhang, Z.; Li, Y.; Zhao, P.; Chen, Y. LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int. Immunopharmacol., 2019, 72, 496-503. doi: 10.1016/j.intimp.2019.04.042 PMID: 31054453
- Brennan, E.; Wang, B.; McClelland, A.; Mohan, M.; Marai, M.; Beuscart, O.; Derouiche, S.; Gray, S.; Pickering, R.; Tikellis, C.; de Gaetano, M.; Barry, M.; Belton, O.; Ali-Shah, S.T.; Guiry, P.; Jandeleit-Dahm, K.A.M.; Cooper, M.E.; Godson, C.; Kantharidis, P. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes, 2017, 66(8), 2266-2277. doi: 10.2337/db16-1405 PMID: 28487436
- Zhang, W.; Sui, Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells. Mol. Cell. Biochem., 2020, 471(1-2), 101-111. doi: 10.1007/s11010-020-03770-2 PMID: 32524321
- Gast, M.; Rauch, B.H.; Haghikia, A.; Nakagawa, S.; Haas, J.; Stroux, A.; Schmidt, D.; Schumann, P.; Weiss, S.; Jensen, L.; Kratzer, A.; Kraenkel, N.; Müller, C.; Börnigen, D.; Hirose, T.; Blankenberg, S.; Escher, F.; Kühl, A.A.; Kuss, A.W.; Meder, B.; Landmesser, U.; Zeller, T.; Poller, W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc. Res., 2019, 115(13), 1886-1906. doi: 10.1093/cvr/cvz085 PMID: 30924864
- Guo, J.T.; Wang, L.; Yu, H.B. Knockdown of NEAT1 mitigates ox-LDL-induced injury in human umbilical vein endothelial cells via miR-30c-5p/TCF7 axis. Eur Rev Med Pharmaco, 2020, 24(18), 9633-9644. PMID: 33015807
- Sun, X.; Feinberg, M.W. NF-κB and Hypoxia. Am. J. Pathol., 2012, 181(5), 1513-1517. doi: 10.1016/j.ajpath.2012.09.001 PMID: 22999810
- Mitchell, J.P.; Carmody, R.J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol., 2018, 335, 41-84. doi: 10.1016/bs.ircmb.2017.07.007 PMID: 29305014
- Razeghian-Jahromi, I.; Karimi, A.A.; Zibaeenezhad, M.J. The role of ANRIL in atherosclerosis. Dis. Markers, 2022, 2022, 1-10. doi: 10.1155/2022/8859677 PMID: 35186169
- Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR‐181b on the inflammation‐relevant coronary artery disease through mediating NF ‐κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075. doi: 10.1111/jcmm.13790 PMID: 30079603
- Chen, T.; Li, L.; Ye, B.; Chen, W.; Zheng, G.; Xie, H.; Guo, Y. Knockdown of hsa_circ_0005699 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells through regulation of the miR-450b-5p/NFKB1 axis. Mol. Med. Rep., 2022, 26(3), 290. doi: 10.3892/mmr.2022.12806 PMID: 35904173
- Baldwin, A.S., Jr The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol., 1996, 14(1), 649-681. doi: 10.1146/annurev.immunol.14.1.649 PMID: 8717528
- Lin, Z.; Ge, J.; Wang, Z.; Ren, J.; Wang, X.; Xiong, H.; Gao, J.; Zhang, Y.; Zhang, Q. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci. Rep., 2017, 7(1), 42498. doi: 10.1038/srep42498 PMID: 28195197
- Li, H.; Sun, B. Toll-like receptor 4 in atherosclerosis. J. Cell. Mol. Med., 2007, 11(1), 88-95. doi: 10.1111/j.1582-4934.2007.00011.x PMID: 17367503
- Tang, Y.L.; Jiang, J.H.; Wang, S.; Liu, Z.; Tang, X.Q.; Peng, J.; Yang, Y.Z.; Gu, H.F. TLR4/NF-kappaB signaling contributes to chronic unpredictable mild stress-induced atherosclerosis in ApoE-/- mice. PLoS One, 2015, 10(4), e0123685. doi: 10.1371/journal.pone.0123685
- Huang, H.; Huang, X.; Yu, H.; Xue, Y.; Zhu, P. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells. Biochem. Biophys. Res. Commun., 2020, 525(2), 512-519. doi: 10.1016/j.bbrc.2020.02.109 PMID: 32113679
- Bai, Y.; Liu, X.; Chen, Q.; Chen, T.; Jiang, N.; Guo, Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 up-regulating the expression of miR-29a-3p. Sci. Rep., 2021, 11(1), 19637. doi: 10.1038/s41598-021-98916-7 PMID: 34608195
- Stark, A.K.; Sriskantharajah, S.; Hessel, E.M.; Okkenhaug, K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol., 2015, 23, 82-91. doi: 10.1016/j.coph.2015.05.017 PMID: 26093105
- Ren, M.; Wang, T.; Han, Z.; Fu, P.; Liu, Z.; Ouyang, C. Long noncoding RNA OIP5-AS1 contributes to the progression of atherosclerosis by targeting miR-26a-5p through the AKT/NF-κB pathway. J. Cardiovasc. Pharmacol., 2020, 76(5), 635-644. doi: 10.1097/FJC.0000000000000889 PMID: 32833899
- Zhang, Y.; Xie, B.; Sun, L.; Chen, W.; Jiang, S.L.; Liu, W.; Bian, F.; Tian, H.; Li, R.K. Phenotypic switching of vascular smooth muscle cells in the normal region of aorta from atherosclerosis patients is regulated by miR‐145. J. Cell. Mol. Med., 2016, 20(6), 1049-1061. doi: 10.1111/jcmm.12825 PMID: 26992033
- Chanchevalap, S.; Nandan, M.O.; McConnell, B.B.; Charrier, L.; Merlin, D.; Katz, J.P.; Yang, V.W. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res., 2006, 34(4), 1216-1223. doi: 10.1093/nar/gkl014 PMID: 16500892
- Wang, F.; Ge, J.; Huang, S.; Zhou, C.; Sun, Z.; Song, Y.; Xu, Y.; Ji, Y. KLF5/LINC00346/miR 148a 3p axis regulates inflammation and endothelial cell injury in atherosclerosis. Int. J. Mol. Med., 2021, 48(2), 152. doi: 10.3892/ijmm.2021.4985 PMID: 34165154
- Fu, D.N.; Wang, Y.; Yu, L.J.; Liu, M.J.; Zhen, D. Silenced long non-coding RNA activated by DNA damage elevates microRNA-495-3p to suppress atherosclerotic plaque formation via reducing Krüppel-like factor 5. Exp. Cell Res., 2021, 401(2), 112519. doi: 10.1016/j.yexcr.2021.112519 PMID: 33636159
- Jiang, X.; Chen, L.; Wu, H.; Chen, Y.; Lu, W.; Lu, K. Knockdown of circular ubiquitin-specific peptidase 9 X-linked alleviates oxidized low-density lipoprotein-induced injuries of human umbilical vein endothelial cells by mediating the miR-148b-3p/KLF5 signaling pathway. J. Cardiovasc. Pharmacol., 2021, 78(6), 809-818. doi: 10.1097/FJC.0000000000001127 PMID: 34882112
- Dickson, K.M.; Bhakar, A.L.; Barker, P.A. TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev. Dyn., 2004, 231(1), 122-127. doi: 10.1002/dvdy.20110 PMID: 15305292
- Zhao, J.; Cui, L.; Sun, J.; Xie, Z.; Zhang, L.; Ding, Z.; Quan, X. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis. Cell. Signal., 2020, 76, 109781. doi: 10.1016/j.cellsig.2020.109781 PMID: 32947021
- Niture, S.; Moore, J.; Kumar, D. TNFAIP8: Inflammation, immunity and human diseases. J. Cell. Immunol., 2019, 1(2), 29-34. PMID: 31723944
- Ji, P.; Song, X.; Lv, Z. Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 axis. J. Cardiovasc. Pharmacol., 2021, 78(2), 269-279. doi: 10.1097/FJC.0000000000001063 PMID: 34554678
- Huang, X.; Li, Y.; Li, X.; Fan, D.; Xin, H.B.; Fu, M. TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J. Mol. Cell Biol., 2020, 12(3), 176-189. doi: 10.1093/jmcb/mjz040 PMID: 31070748
- Zhang, C.; Wang, L.; Shen, Y. Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc. Disord., 2021, 21(1), 207. doi: 10.1186/s12872-021-02012-7 PMID: 33892646
- Budai, M.M.; Varga, A.; Milesz, S.; Tőzsér, J.; Benkő, S. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol. Immunol., 2013, 56(4), 471-479. doi: 10.1016/j.molimm.2013.05.005 PMID: 23911403
- Cheng, J.; Liu, Q.; Hu, N.; Zheng, F.; Zhang, X.; Ni, Y.; Liu, J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene, 2019, 709, 1-7. doi: 10.1016/j.gene.2019.05.012 PMID: 31108165
- Verhoef, P.A.; Kertesy, S.B.; Lundberg, K.; Kahlenberg, J.M.; Dubyak, G.R. Inhibitory effects of chloride on the activation of caspase-1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J. Immunol., 2005, 175(11), 7623-7634. doi: 10.4049/jimmunol.175.11.7623 PMID: 16301672
- Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202. doi: 10.1038/s41467-017-00227-x PMID: 28779175
- Peng, H.; Sun, J.; Li, Y.; Zhang, Y.; Zhong, Y. Circ-USP9X inhibition reduces oxidized low-density lipoproteininduced endothelial cell injury via the microRNA 599/Chloride intracellular channel 4 axis. J. Cardiovasc. Pharmacol., 2021, 78(4), 560-571. doi: 10.1097/FJC.0000000000001104 PMID: 34269702
- Jing, B.; Hui, Z. Circular RNA_0033596 aggravates endothelial cell injury induced by oxidized low-density lipoprotein via microRNA-217-5p/chloride intracellular channel 4 axis. Bioengineered, 2022, 13(2), 3410-3421. doi: 10.1080/21655979.2022.2027062 PMID: 35081862
- Shao, X.; Liu, Z.; Liu, S.; Lin, N.; Deng, Y. Astragaloside IV alleviates atherosclerosis through targeting circ_0000231/miR-135a-5p/CLIC4 axis in AS cell model in vitro. Mol. Cell. Biochem., 2021, 476(4), 1783-1795. doi: 10.1007/s11010-020-04035-8 PMID: 33439448
- Zhaolin, Z.; Guohua, L.; Shiyuan, W.; Zuo, W. Role of pyroptosis in cardiovascular disease. Cell Prolif., 2019, 52(2), e12563. doi: 10.1111/cpr.12563 PMID: 30525268
- Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449. doi: 10.1111/jpi.12449 PMID: 29024030
- Song, Y.; Yang, L.; Guo, R.; Lu, N.; Shi, Y.; Wang, X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem. Biophys. Res. Commun., 2019, 509(2), 359-366. doi: 10.1016/j.bbrc.2018.12.139 PMID: 30591217
- Ge, Y.; Liu, W.; Yin, W.; Wang, X.; Wang, J.; Zhu, X.; Xu, S. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered, 2021, 12(2), 10837-10848. doi: 10.1080/21655979.2021.1989260 PMID: 34637670
- Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol., 2010, 11(2), 136-140. doi: 10.1038/ni.1831 PMID: 20023662
- Chen, G.; Li, Y.; Zhang, A.; Gao, L.; Circular, RNA. Circ-BANP regulates oxidized low-density lipoprotein-induced endothelial cell injury through targeting the miR-370/thioredoxin-interacting protein axis. J. Cardiovasc. Pharmacol., 2021, 77(3), 349-359. doi: 10.1097/FJC.0000000000000964 PMID: 33298736
- Lei, X.; Yang, Y. Oxidized low-density lipoprotein contributes to injury of endothelial cells via the circ_0090231/miR-9-5p/TXNIP axis. Cent. Eur. J. Immunol., 2022, 47(1), 41-57. doi: 10.5114/ceji.2021.112521 PMID: 35600155
- Zhang, L.; Yuan, M.; Zhang, L.; Wu, B.; Sun, X. Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis. Biochem. Biophys. Res. Commun., 2019, 514(1), 266-272. doi: 10.1016/j.bbrc.2019.04.143 PMID: 31030940
- Mao, X.; Wang, L.; Chen, C.; Tao, L.; Ren, S.; Zhang, L. Circ_0124644 enhances ox-LDL-induced cell damages in human umbilical vein endothelial cells through up-regulating FOXO4 by sponging miR-370-3p. Clin. Hemorheol. Microcirc., 2022, 81(2), 135-147. doi: 10.3233/CH-211375 PMID: 35570481
- Fu, X.; Sun, Z.; Long, Q.; Tan, W.; Ding, H.; Liu, X.; Wu, L.; Wang, Y.; Zhang, W. Glycosides from Buyang Huanwu Decoction inhibit atherosclerotic inflammation via JAK/STAT signaling pathway. Phytomedicine, 2022, 105, 154385. doi: 10.1016/j.phymed.2022.154385 PMID: 35987015
- Ortiz-Muñoz, G.; Martin-Ventura, J.L.; Hernandez-Vargas, P.; Mallavia, B.; Lopez-Parra, V.; Lopez-Franco, O.; Muñoz-Garcia, B.; Fernandez-Vizarra, P.; Ortega, L.; Egido, J.; Gomez-Guerrero, C. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 525-531. doi: 10.1161/ATVBAHA.108.173781 PMID: 19164812
- Li, S.; Sun, Y.; Zhong, L.; Xiao, Z.; Yang, M.; Chen, M.; Wang, C.; Xie, X.; Chen, X. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr. Metab. Cardiovasc. Dis., 2018, 28(11), 1175-1187. doi: 10.1016/j.numecd.2018.06.017 PMID: 30314869
- Wang, R.; Zhang, Y.; Xu, L.; Lin, Y.; Yang, X.; Bai, L.; Chen, Y.; Zhao, S.; Fan, J.; Cheng, X.; Liu, E. Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced cell responses during atherosclerosis in apolipoprotein e-deficient mice. Sci. Rep., 2016, 6(1), 36790. doi: 10.1038/srep36790 PMID: 27845432
- Zhou, Q.; Run, Q.; Li, C.Y.; Xiong, X.Y.; Wu, X.L. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet. Genome Res., 2020, 160(10), 565-578. doi: 10.1159/000509811 PMID: 33022677
- Cremer, S.; Michalik, K.M.; Fischer, A.; Pfisterer, L.; Jaé, N.; Winter, C.; Boon, R.A.; Muhly-Reinholz, M.; John, D.; Uchida, S.; Weber, C.; Poller, W.; Günther, S.; Braun, T.; Li, D.Y.; Maegdefessel, L.; Perisic Matic, L.; Hedin, U.; Soehnlein, O.; Zeiher, A.; Dimmeler, S. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation, 2019, 139(10), 1320-1334. doi: 10.1161/CIRCULATIONAHA.117.029015 PMID: 30586743
- Chen, P.Y.; Qin, L.; Li, G.; Wang, Z.; Dahlman, J.E.; Malagon-Lopez, J.; Gujja, S.; Cilfone, N.A.; Kauffman, K.J.; Sun, L.; Sun, H.; Zhang, X.; Aryal, B.; Canfran-Duque, A.; Liu, R.; Kusters, P.; Sehgal, A.; Jiao, Y.; Anderson, D.G.; Gulcher, J.; Fernandez-Hernando, C.; Lutgens, E.; Schwartz, M.A.; Pober, J.S.; Chittenden, T.W.; Tellides, G.; Simons, M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab., 2019, 1(9), 912-926. doi: 10.1038/s42255-019-0102-3 PMID: 31572976
- Singh, N.; Ramji, D. The role of transforming growth factor-β in atherosclerosis. Cytokine Growth Factor Rev., 2006, 17(6), 487-499. doi: 10.1016/j.cytogfr.2006.09.002 PMID: 17056295
- Huang, S.P.; Guan, X.; Kai, G.Y.; Xu, Y.Z.; Xu, Y.; Wang, H.J.; Pang, T.; Zhang, L.Y.; Liu, Y. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway. Chin. J. Nat. Med., 2019, 17(5), 372-380. doi: 10.1016/S1875-5364(19)30043-3 PMID: 31171272
- Chen, D.; Wang, K.; Zheng, Y.; Wang, G.; Jiang, M. Exosomes-mediated LncRNA ZEB1-AS1 facilitates cell injuries by miR-590-5p/ETS1 Axis through the TGF-β/Smad pathway in oxidized low-density lipoprotein-induced human umbilical vein endothelial cells. J. Cardiovasc. Pharmacol., 2021, 77(4), 480-490. doi: 10.1097/FJC.0000000000000974 PMID: 33818551
- Bryk, D.; Olejarz, W.; Zapolska-Downar, D. Mitogen-activated protein kinases in atherosclerosis. Postepy Hig. Med. Dosw., 2014, 68, 10-22. Mitogen-activated protein kinases in atherosclerosis doi: 10.5604/17322693.1085463
- Zhao, J.; Xu, S.; Liu, J. Fibrinopeptide A induces C‐reactive protein expression through the ROS‐ERK1/2/p38‐NF‐κB signal pathway in the human umbilical vascular endothelial cells. J. Cell. Physiol., 2019, 234(8), 13481-13492. doi: 10.1002/jcp.28027 PMID: 30633345
- Wang, L.; Qi, Y.; Wang, Y.; Tang, H.; Li, Z.; Wang, Y.; Tang, S.; Zhu, H. LncRNA MALAT1 suppression protects endothelium against oxLDL-induced inflammation via inhibiting expression of MiR-181b target gene TOX. Oxid. Med. Cell. Longev., 2019, 2019, 1-11. doi: 10.1155/2019/8245810 PMID: 31949884
- Li, K.; Gesang, L.; Dan, Z.; Gusang, L. Genome-wide transcriptional analysis reveals the protection against hypoxia-induced oxidative injury in the intestine of tibetans via the inhibition of GRB2/EGFR/PTPN11 pathways. Oxid. Med. Cell. Longev., 2016, 2016, 1-13. doi: 10.1155/2016/6967396 PMID: 27594973
- Guo, J.; Li, J.; Zhang, J.; Guo, X.; Liu, H.; Li, P.; Zhang, Y.; Lin, C.; Fan, Z. LncRNA PVT1 knockdown alleviated ox-LDL-induced vascular endothelial cell injury and atherosclerosis by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr. Metab. Cardiovasc. Dis., 2021, 31(12), 3508-3521. doi: 10.1016/j.numecd.2021.08.031 PMID: 34627697
- Newby, A.C. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp. Physiol., 2016, 101(11), 1327-1337. doi: 10.1113/EP085567 PMID: 26969796
- Boutilier, A.J.; Elsawa, S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(13), 6995. doi: 10.3390/ijms22136995 PMID: 34209703
- Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS) vs. alternatively activated macrophages. Front. Immunol., 2019, 10, 1084. doi: 10.3389/fimmu.2019.01084 PMID: 31178859
- Yang, S.; Yuan, H.Q.; Hao, Y.M.; Ren, Z.; Qu, S.L.; Liu, L.S.; Wei, D.H.; Tang, Z.H.; Zhang, J.F.; Jiang, Z.S. Macrophage polarization in atherosclerosis. Clin. Chim. Acta, 2020, 501, 142-146. doi: 10.1016/j.cca.2019.10.034 PMID: 31730809
- Gao, X.; Ge, J.; Li, W.; Zhou, W.; Xu, L. LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p. Biol. Chem., 2018, 399(4), 375-386. doi: 10.1515/hsz-2017-0215 PMID: 29252185
- Cho, K.Y.; Miyoshi, H.; Kuroda, S.; Yasuda, H.; Kamiyama, K.; Nakagawara, J.; Takigami, M.; Kondo, T.; Atsumi, T. The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J. Stroke Cerebrovasc. Dis., 2013, 22(7), 910-918. doi: 10.1016/j.jstrokecerebrovasdis.2012.11.020 PMID: 23273713
- Ye, J.; Wang, C.; Wang, D.; Yuan, H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp. Cell Res., 2018, 369(2), 348-355. doi: 10.1016/j.yexcr.2018.05.039 PMID: 29859752
- Li, T.; Ding, L.; Wang, Y.; Yang, O.; Wang, S.; Kong, J. Genetic deficiency of Phactr1 promotes atherosclerosis development via facilitating M1 macrophage polarization and foam cell formation. Clin. Sci., 2020, 134(17), 2353-2368. doi: 10.1042/CS20191241 PMID: 32857129
- Wang, L.; Zheng, Z.; Feng, X.; Zang, X.; Ding, W.; Wu, F.; Zhao, Q. circRNA/lncRNA-miRNA-mRNA network in oxidized, low-density, lipoprotein-induced foam cells. DNA Cell Biol., 2019, 38(12), 1499-1511. doi: 10.1089/dna.2019.4865 PMID: 31804889
- Wang, X.; Bai, M. CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro. BMC Cardiovasc. Disord., 2021, 21(1), 51. doi: 10.1186/s12872-020-01800-x PMID: 33526034
- Li, Y.; He, P.P.; Zhang, D.W.; Zheng, X.L.; Cayabyab, F.S.; Yin, W.D.; Tang, C.K. Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis, 2014, 237(2), 597-608. doi: 10.1016/j.atherosclerosis.2014.10.016 PMID: 25463094
- Zhen, Z.; Ren, S.; Ji, H.; Ding, X.; Zou, P.; Lu, J. The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochem. Biophys. Res. Commun., 2019, 516(4), 1234-1241. doi: 10.1016/j.bbrc.2019.06.113 PMID: 31300197
- Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306. doi: 10.3389/fphar.2019.00306 PMID: 31019462
- Boada-Romero, E.; Martinez, J.; Heckmann, B.L.; Green, D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 398-414. doi: 10.1038/s41580-020-0232-1 PMID: 32251387
- Kourtzelis, I.; Hajishengallis, G.; Chavakis, T. Phagocytosis of apoptotic cells in resolution of inflammation. Front. Immunol., 2020, 11, 553. doi: 10.3389/fimmu.2020.00553 PMID: 32296442
- Linton, M.F.; Babaev, V.R.; Huang, J.; Linton, E.F.; Tao, H.; Yancey, P.G. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J., 2016, 80(11), 2259-2268. doi: 10.1253/circj.CJ-16-0924 PMID: 27725526
- Mueller, P.A.; Kojima, Y.; Huynh, K.T.; Maldonado, R.A.; Ye, J.; Tavori, H.; Pamir, N.; Leeper, N.J.; Fazio, S. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) is required for the effect of CD47 blockade on efferocytosis and atherogenesisbrief report. Arterioscler. Thromb. Vasc. Biol., 2022, 42(1), e1-e9. doi: 10.1161/ATVBAHA.121.316854 PMID: 34758632
- Ye, Z.; Yang, S.; Xia, Y.; Hu, R.; Chen, S.; Li, B.; Chen, S.; Luo, X.; Mao, L.; Li, Y.; Jin, H.; Qin, C.; Hu, B. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 up-regulation. Cell Death Dis., 2019, 10(2), 138. doi: 10.1038/s41419-019-1409-4 PMID: 30755588
- González-Navarro, H.; Abu Nabah, Y.N.; Vinué, Á.; Andrés-Manzano, M.J.; Collado, M.; Serrano, M.; Andrés, V. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol., 2010, 55(20), 2258-2268. doi: 10.1016/j.jacc.2010.01.026 PMID: 20381282
- Yan, L.; Liu, Z.; Yin, H.; Guo, Z.; Luo, Q. Silencing of MEG3 inhibited ox‐LDL‐induced inflammation and apoptosis in macrophages via modulation of the MEG3/miR‐204/CDKN2A regulatory axis. Cell Biol. Int., 2019, 43(4), 409-420. doi: 10.1002/cbin.11105 PMID: 30672051
- An, J.H.; Chen, Z.Y.; Ma, Q.L.; Wang, H.J.; Zhang, J.Q.; Shi, F.W. LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. Eur Rev Med Pharmaco, 2019, 23(19), 8665-8677. PMID: 31646601
- Shi, Z.; Zheng, Z.; Lin, X.; Ma, H. Long noncoding RNA MALAT1 regulates the progression of atherosclerosis by miR-330-5p/NF-κB signal pathway. J. Cardiovasc. Pharmacol., 2021, 78(2), 235-246. doi: 10.1097/FJC.0000000000001061 PMID: 34554676
- Liu, J.; Huang, G.Q.; Ke, Z.P. Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox‐LDL‐treated human macrophages by up-regulating miR‐330‐5p. J. Cell. Physiol., 2019, 234(4), 5134-5142. doi: 10.1002/jcp.27317 PMID: 30187491
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 2017, 25(1), 11-24. doi: 10.1007/s10787-017-0309-4 PMID: 28083748
- He, L.; Zhao, X.; He, L. LINC01140 alleviates the oxidized low-density lipoprotein-induced inflammatory response in macrophages via suppressing miR-23b. Inflammation, 2020, 43(1), 66-73. doi: 10.1007/s10753-019-01094-y PMID: 31748847
- He, Q.; Shao, D.; Hao, S.; Yuan, Y.; Liu, H.; Liu, F.; Mu, Q. CircSCAP aggravates oxidized low-density lipoprotein-induced macrophage injury by up-regulating PDE3B by miR-221-5p in atherosclerosis. J. Cardiovasc. Pharmacol., 2021, 78(5), e749-e760. doi: 10.1097/FJC.0000000000001118 PMID: 34321402
- Wen, L.; Yang, Q.H.; Ma, X.L.; Li, T.; Xiao, S.; Sun, C.F. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int. Immunopharmacol., 2021, 99, 107993. doi: 10.1016/j.intimp.2021.107993 PMID: 34330059
- Xu, C.; Chen, L.; Wang, R.J.; Meng, J. LncRNA KCNQ1OT1 knockdown inhibits ox-LDL-induced inflammatory response and oxidative stress in THP-1 macrophages through the miR-137/TNFAIP1 axis. Cytokine, 2022, 155, 155912. doi: 10.1016/j.cyto.2022.155912 PMID: 35598525
- Han, Y.; Ma, J.; Wang, J.; Wang, L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol. Immunol., 2018, 93, 107-114. doi: 10.1016/j.molimm.2017.11.017 PMID: 29172088
- Liang, H.; Yang, K.; Xin, M.; Liu, X.; Zhao, L.; Liu, B.; Wang, J. MiR-130a protects against lipopolysaccharide-induced glomerular cell injury by up-regulation of Klotho. Pharmazie, 2017, 72(8), 468-474. PMID: 29441906
- Zhang, Y.; Lu, X.; Yang, M.; Shangguan, J.; Yin, Y. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol. Cell. Biochem., 2021, 476(2), 949-957. doi: 10.1007/s11010-020-03962-w PMID: 33128668
- Du, X.J.; Lu, J.M. MiR‐135a represses oxidative stress and vascular inflammatory events viatargeting toll‐like receptor 4 in atherogenesis. J. Cell. Biochem., 2018, 119(7), 6154-6161. doi: 10.1002/jcb.26819 PMID: 29663503
- Huynh, D.T.N.; Heo, K.S. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch. Pharm. Res., 2021, 44(12), 1051-1061. doi: 10.1007/s12272-021-01360-4 PMID: 34743301
- Lee, H.S.; Yun, S.J.; Ha, J.M.; Jin, S.Y.; Ha, H.K.; Song, S.H.; Kim, C.D.; Bae, S.S. Prostaglandin D2 stimulates phenotypic changes in vascular smooth muscle cells. Exp. Mol. Med., 2019, 51(11), 1-10. doi: 10.1038/s12276-019-0330-3 PMID: 31735914
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res., 2016, 118(4), 692-702. doi: 10.1161/CIRCRESAHA.115.306361 PMID: 26892967
- Wang, Y.; Dubland, J.A.; Allahverdian, S.; Asonye, E.; Sahin, B.; Jaw, J.E.; Sin, D.D.; Seidman, M.A.; Leeper, N.J.; Francis, G.A. Smooth muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2019, 39(5), 876-887. doi: 10.1161/ATVBAHA.119.312434 PMID: 30786740
- Peng, N.; Liu, J.; Gao, D.; Lin, R.; Li, R. Angiotensin II-induced C-reactive protein generation: Inflammatory role of vascular smooth muscle cells in atherosclerosis. Atherosclerosis, 2007, 193(2), 292-298. doi: 10.1016/j.atherosclerosis.2006.09.007 PMID: 17055513
- Allahverdian, S.; Chaabane, C.; Boukais, K.; Francis, G.A.; Bochaton-Piallat, M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 540-550. doi: 10.1093/cvr/cvy022 PMID: 29385543
- Qi, M.; Xin, S. FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Mol. Med. Rep., 2019, 20(1), 162-170. doi: 10.3892/mmr.2019.10249 PMID: 31115530
- Ananyeva, N.M.; Tjurmin, A.V.; Berliner, J.A.; Chisolm, G.M.; Liau, G.; Winkles, J.A.; Haudenschild, C.C. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler. Thromb. Vasc. Biol., 1997, 17(3), 445-453. doi: 10.1161/01.ATV.17.3.445 PMID: 9102162
- Zhang, L.; Cheng, H.; Yue, Y.; Li, S.; Zhang, D.; He, R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc. Pathol., 2018, 33, 6-15. doi: 10.1016/j.carpath.2017.11.004 PMID: 29268138
- Abid, M.R.; Yano, K.; Guo, S.; Patel, V.I.; Shrikhande, G.; Spokes, K.C.; Ferran, C.; Aird, W.C. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J. Biol. Chem., 2005, 280(33), 29864-29873. doi: 10.1074/jbc.M502149200 PMID: 15961397
- Brown, J.; Wang, H.; Suttles, J.; Graves, D.T.; Martin, M. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response viaFoxO1. J. Biol. Chem., 2011, 286(52), 44295-44305. doi: 10.1074/jbc.M111.258053 PMID: 22045807
- Li, X.; Li, L.; Dong, X.; Ding, J.; Ma, H.; Han, W. Circ_GRN promotes the proliferation, migration, and inflammation of vascular smooth muscle cells in atherosclerosis through miR-214-3p/FOXO1 axis. J. Cardiovasc. Pharmacol., 2021, 77(4), 470-479. doi: 10.1097/FJC.0000000000000982 PMID: 33818550
- Urrego, D.; Tomczak, A.P.; Zahed, F.; Stühmer, W.; Pardo, L.A. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638), 20130094. doi: 10.1098/rstb.2013.0094 PMID: 24493742
- Lao, K.H.; Zeng, L.; Xu, Q. Endothelial and smooth muscle cell transformation in atherosclerosis. Curr. Opin. Lipidol., 2015, 26(5), 449-456. doi: 10.1097/MOL.0000000000000219 PMID: 26218417
- Zhang, P.; Wang, W.; Li, M. Circ_0010283/miR-377-3p/Cyclin D1 axis is associated with proliferation, apoptosis, migration, and inflammation of oxidized low-density lipoprotein-stimulated vascular smooth muscle cells. J. Cardiovasc. Pharmacol., 2021, 78(3), 437-447. doi: 10.1097/FJC.0000000000001076 PMID: 34516453
- Luftman, K.; Hasan, N.; Day, P.; Hardee, D.; Hu, C. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochem. Biophys. Res. Commun., 2009, 380(1), 65-70. doi: 10.1016/j.bbrc.2009.01.036 PMID: 19159614
- Zhu, J.J.; Liu, Y.F.; Zhang, Y.P.; Zhao, C.R.; Yao, W.J.; Li, Y.S.; Wang, K.C.; Huang, T.S.; Pang, W.; Wang, X.F.; Wang, X.; Chien, S.; Zhou, J. VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proc. Natl. Acad. Sci., 2017, 114(31), 8271-8276. doi: 10.1073/pnas.1700561114 PMID: 28716920
- Li, R.; Jiang, Q.; Zheng, Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox‐LDL through miR 326‐3p/VAMP3 axis in atherosclerosis. J. Cell. Mol. Med., 2021, 25(16), 8028-8038. doi: 10.1111/jcmm.16734 PMID: 34169652
- Burger, F.; Baptista, D.; Roth, A.; da Silva, R.F.; Montecucco, F.; Mach, F.; Brandt, K.J.; Miteva, K. NLRP3 inflammasome activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis. Int. J. Mol. Sci., 2021, 23(1), 340. doi: 10.3390/ijms23010340 PMID: 35008765
- Chhibber-Goel, J.; Singhal, V.; Bhowmik, D.; Vivek, R.; Parakh, N.; Bhargava, B.; Sharma, A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes, 2016, 2(1), 7. doi: 10.1038/s41522-016-0009-7 PMID: 28649401
- Suh, J.S.; Kim, S.; Boström, K.I.; Wang, C.Y.; Kim, R.H.; Park, N.H. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelialmesenchymal transition in mice. Int. J. Oral Sci., 2019, 11(3), 21. doi: 10.1038/s41368-019-0054-1 PMID: 31257363
- Liu, J.; Wang, Y.; Liao, Y.; Zhou, Y.; Zhu, J. Circular RNA PPP1CC promotes Porphyromonas gingivalis -lipopolysaccharide-induced pyroptosis of vascular smooth muscle cells by activating the HMGB1/TLR9/AIM2 pathway. J. Int. Med. Res., 2021, 49(3) doi: 10.1177/0300060521996564 PMID: 33769113
- Lin, Y.; Huang, H.; Yu, Y.; Zhu, F.; Xiao, W.; Yang, Z.; Shao, L.; Shen, Z. Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression viathe NF-κB pathway. Ann. Transl. Med., 2021, 9(24), 1776. doi: 10.21037/atm-21-6402 PMID: 35071470
- Ye, B.; Wu, Z.; Tsui, T.Y.; Zhang, B.; Su, X.; Qiu, Y.; Zheng, X. lncRNA KCNQ1OT1 suppresses the inflammation and proliferation of vascular smooth muscle cells through iκba in intimal hyperplasia. Mol. Ther. Nucleic Acids, 2020, 20, 62-72. doi: 10.1016/j.omtn.2020.01.032 PMID: 32146419
- Kong, P.; Yu, Y.; Wang, L.; Dou, Y.Q.; Zhang, X.H.; Cui, Y.; Wang, H.Y.; Yong, Y.T.; Liu, Y.B.; Hu, H.J.; Cui, W.; Sun, S.G.; Li, B.H.; Zhang, F.; Han, M. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res., 2019, 47(7), 3580-3593. doi: 10.1093/nar/gkz141 PMID: 30820544
- Wang, F.; Liu, Z.; Park, S.H.; Gwag, T.; Lu, W.; Ma, M.; Sui, Y.; Zhou, C. Myeloid β-catenin deficiency exacerbates atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2018, 38(7), 1468-1478. doi: 10.1161/ATVBAHA.118.311059 PMID: 29724817
- Marchand, A.; Atassi, F.; Gaaya, A.; Leprince, P.; Le Feuvre, C.; Soubrier, F.; Lompré, A.M.; Nadaud, S. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell, 2011, 10(2), 220-232. doi: 10.1111/j.1474-9726.2010.00661.x PMID: 21108734
- Sun, H.; Feng, J.; Ma, Y.; Cai, D.; Luo, Y.; Wang, Q.; Li, F.; Zhang, M.; Hu, Q. RETRACTED ARTICLE: Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice. Nanoscale Res. Lett., 2021, 16(1), 165. doi: 10.1186/s11671-021-03608-w PMID: 34807315
- Zhuang, J.B.; Li, T.; Hu, X.M.; Ning, M.; Gao, W.Q.; Lang, Y.H.; Zheng, W.F.; Wei, J. Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214-3p/Wnt3/β-catenin pathway. Eur Rev Med Pharmaco, 2020, 24(6), 3282-3292. PMID: 32271446
- Zhao, Y.; Zhang, J.; Zhang, W.; Xu, Y. A myriad of roles of dendritic cells in atherosclerosis. Clin. Exp. Immunol., 2021, 206(1), 12-27. doi: 10.1111/cei.13634 PMID: 34109619
- Gil-Pulido, J.; Zernecke, A. Antigen-presenting dendritic cells in atherosclerosis. Eur. J. Pharmacol., 2017, 816, 25-31. doi: 10.1016/j.ejphar.2017.08.016 PMID: 28822856
- Chen, L.; Hu, L.; Zhu, X.; Wang, Y.; Li, Q.; Ma, J.; Li, H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle, 2020, 19(19), 2472-2485. doi: 10.1080/15384101.2020.1807094 PMID: 32840181
- Zhu, J.; Chen, Z.; Peng, X.; Zheng, Z.; Le, A.; Guo, J.; Ma, L.; Shi, H.; Yao, K.; Zhang, S.; Ge, J.; Zheng, Z.; Wang, Q. Extracellular vesicle-derived circitgb1 regulates dendritic cell maturation and cardiac inflammation via miR-342-3p/NFAM1. Oxid. Med. Cell. Longev., 2022, 2022, 1-23. doi: 10.1155/2022/8392313 PMID: 35615580
- Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716. doi: 10.1093/eurheartj/ehx165 PMID: 28430919
- Li, L.; Wang, L.; Li, H.; Han, X.; Chen, S.; Yang, B.; Hu, Z.; Zhu, H.; Cai, C.; Chen, J.; Li, X.; Huang, J.; Gu, D. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis, 2018, 275, 359-367. doi: 10.1016/j.atherosclerosis.2018.06.866 PMID: 30015300
- Chen, L.; Qu, H.; Guo, M.; Zhang, Y.; Cui, Y.; Yang, Q.; Bai, R.; Shi, D. ANRIL and atherosclerosis. J. Clin. Pharm. Ther., 2020, 45(2), 240-248. doi: 10.1111/jcpt.13060 PMID: 31703157
- Zhang, Z.; Gao, W.; Long, Q.Q.; Zhang, J.; Li, Y.F. liu, D.C.; Yan, J.J.; Yang, Z.J.; Wang, L.S. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep., 2017, 7(1), 7491. doi: 10.1038/s41598-017-07611-z PMID: 28790415
- Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol., 2019, 234(5), 5588-5600. doi: 10.1002/jcp.27384 PMID: 30341894
- Liang, B.; Li, M.; Deng, Q.; Wang, C.; Rong, J.; He, S.; Xiang, Y.; Zheng, F. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann. Transl. Med., 2020, 8(12), 741. doi: 10.21037/atm-19-4728 PMID: 32647666
- Jiang, Y.; Du, T. Relation of circulating lncRNA GAS5 and miR‐21 with biochemical indexes, stenosis severity, and inflammatory cytokines in coronary heart disease patients. J. Clin. Lab. Anal., 2022, 36(2), e24202. doi: 10.1002/jcla.24202 PMID: 34997773
- Ayada, K.; Yokota, K.; Kobayashi, K.; Shoenfeld, Y.; Matsuura, E.; Oguma, K. Chronic infections and atherosclerosis. Ann. N. Y. Acad. Sci., 2007, 1108(1), 594-602. doi: 10.1196/annals.1422.062 PMID: 17894024
- Teng, L.; Meng, R. Long non-coding RNA MALAT1 promotes acute cerebral infarction through miRNAs-Mediated hs-CRP regulation. J. Mol. Neurosci., 2019, 69(3), 494-504. doi: 10.1007/s12031-019-01384-y PMID: 31342266
- van Leuven, S.I.; Kastelein, J.J.P. Atorvastatin. Expert Opin. Pharmacother., 2005, 6(7), 1191-1203. doi: 10.1517/14656566.6.7.1191 PMID: 15957972
- Björnsson, E.S. Hepatotoxicity of statins and other lipid-lowering agents. Liver Int., 2017, 37(2), 173-178. doi: 10.1111/liv.13308 PMID: 27860156
- Ye, Y.; Zhao, X.; Lu, Y.; Long, B.; Zhang, S. Varinostat alters gene expression profiles in aortic tissues from ApoE −/ Mice. Hum. Gene Ther. Clin. Dev., 2018, 29(4), 214-225. doi: 10.1089/humc.2018.141 PMID: 30284929
- Petrucci, G.; Rizzi, A.; Hatem, D.; Tosti, G.; Rocca, B.; Pitocco, D. Role of oxidative stress in the pathogenesis of atherothrombotic diseases. Antioxidants, 2022, 11(7), 1408. doi: 10.3390/antiox11071408 PMID: 35883899
- Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res., 2017, 63(1), e12414. doi: 10.1111/jpi.12414 PMID: 28398673
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother., 2021, 134, 111017. doi: 10.1016/j.biopha.2020.111017 PMID: 33338751
- Yang, L.J.; Jeng, C.J.; Kung, H.N.; Chang, C.C.; Wang, A.G.; Chau, G.Y.; Don, M.J.; Chau, Y.P. Tanshinone IIA isolated from Salvia miltiorrhiza elicits the cell death of human endothelial cells. J. Biomed. Sci., 2005, 12(2), 347-361. doi: 10.1007/s11373-005-0973-z PMID: 15917998
- Zhu, J.; Xu, Y.; Ren, G.; Hu, X.; Wang, C.; Yang, Z.; Li, Z.; Mao, W.; Lu, D.; Tanshinone, I.I.A.; Tanshinone, IIA. Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol., 2017, 815, 427-436. doi: 10.1016/j.ejphar.2017.09.047 PMID: 28970012
- Chen, W.; Guo, S.; Li, X.; Song, N.; Wang, D.; Yu, R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J. Leukoc. Biol., 2020, 108(1), 243-252. doi: 10.1002/JLB.3MA0320-327RRR PMID: 32337768
- Kong, X.L.; Lyu, Q.; Zhang, Y.Q.; Kang, D.F.; Li, C.; Zhang, L.; Gao, Z.C.; Liu, X.X.; Wu, J.B.; Li, Y.L. Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics. Chin. J. Nat. Med., 2022, 20(8), 601-613. doi: 10.1016/S1875-5364(22)60186-9 PMID: 36031232
- Fan, S.; Hu, Y.; You, Y.; Xue, W.; Chai, R.; Zhang, X.; Shou, X.; Shi, J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front. Pharmacol., 2022, 13, 924473. doi: 10.3389/fphar.2022.924473 PMID: 36120366
- Chen, J.; Liu, Y.; Liu, Y.; Peng, J. Resveratrol protects against ox-LDL-induced endothelial dysfunction in atherosclerosis via depending on circ_0091822/miR-106b-5p-mediated up-regulation of TLR4. Immunopharmacol. Immunotoxicol., 2022, 44(6), 915-924. doi: 10.1080/08923973.2022.2093740 PMID: 35736860
- Wu, Y.; Zhang, F.; Li, X.; Hou, W.; Zhang, S.; Feng, Y.; Lu, R.; Ding, Y.; Sun, L. Systematic analysis of lncRNA expression profiles and atherosclerosis-associated lncRNA-mRNA network revealing functional lncRNAs in carotid atherosclerotic rabbit models. Funct. Integr. Genomics, 2020, 20(1), 103-115. doi: 10.1007/s10142-019-00705-z PMID: 31392586
- Wang, X. A PCR-based platform for microRNA expression profiling studies. RNA, 2009, 15(4), 716-723. doi: 10.1261/rna.1460509 PMID: 19218553
- Hung, J.H.; Weng, Z. Analysis of microarray and RNA-seq expression profiling data. Cold Spring Harb. Protoc., 2017, 2017(3) pdb.top093104. doi: 10.1101/pdb.top093104 PMID: 27574194
- Wang, L.; Long, H.; Zheng, Q.; Bo, X.; Xiao, X.; Li, B. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer, 2019, 18(1), 119. doi: 10.1186/s12943-019-1046-7 PMID: 31324186
- Chen, J.; Huang, X.; Wang, W.; Xie, H.; Li, J.; Hu, Z.; Zheng, Z.; Li, H.; Teng, L. LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging., 2018, 10(11), 3371-3381. doi: 10.18632/aging.101645 PMID: 30510148
补充文件
