Folate-chitosan Coated Quercetin Liposomes for Targeted Cancer Therapy
- Authors: Chang C.1, Han D.2, Ji Y.1, Wang M.1, Li D.3, Xu Z.2, Li J.1, Huang S.4, Zhu X.1, Jia Y.2
-
Affiliations:
- College of Pharmacy, Henan University of Traditional Chinese Medicine
- College of Pharmacy,, Henan University of Traditional Chinese Medicine
- College of Pharmacy, Henan University of Traditional Chinese Medicin
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine,
- Issue: Vol 25, No 7 (2024)
- Pages: 924-935
- Section: Biotechnology
- URL: https://vestnik-pp.samgtu.ru/1389-2010/article/view/644920
- DOI: https://doi.org/10.2174/0113892010264479231006045014
- ID: 644920
Cite item
Full Text
Abstract
Background:Although quercetin exhibits promising anti-tumor properties, its clinical application is limited due to inherent defects and a lack of tumor targeting.
Objective:This study aimed to prepare and characterize active targeting folate-chitosan modified quercetin liposomes (FA-CS-QUE-Lip), and its antitumor activity in vitro and in vivo was also studied.
Materials and Methods:Box-Behnken Design (BBD) response surface method was used to select the optimal formulation of quercetin liposomes (QUE-LP). On this basis, FA-CS-QUE-LP was obtained by connecting folic acid chitosan complex (FA-CS) and QUE-LP. The release characteristics in vitro of QUE-LP and FA-CS-QUE-LP were studied. Its inhibitory effects on HepG2 cells were studied by the MTT method. The pharmacokinetics and pharmacodynamics in vivo were studied in healthy Wistar mice and S180 tumor-bearing mice, respectively.
Results:The average particle size, zeta potential and encapsulation efficiency of FA-CS-QUELP were 261.6 ± 8.5 nm, 22.3 ± 1.7 mV, and 98.63 ± 1.28 %, respectively. FA-CS-QUE-LP had a sustained release effect and conformed to the Maloid-Banakar release model (R2=0.9967). The results showed that FA-CS-QUE-LP had higher inhibition rates on HepG2 cells than QUE-Sol (p < 0.01). There was a significant difference in AUC, t1/2, CL and other pharmacokinetic parameters among QUE-LP, FA-CS-QUE-LP, and QUE-Sol (p < 0.05). In in vivo antitumor activity study, the weight inhibition rate and volume inhibition rate of FA-CS-QUE-LP were 30.26% and 37.35%, respectively.
Conclusion:FA-CS-QUE-LP exhibited a significant inhibitory effect on HepG2 cells, influenced the pharmacokinetics of quercetin in mice, and demonstrated a certain inhibitory effect on S180 tumor-bearing mice, thus offering novel avenues for cancer treatment.
Keywords
About the authors
Chun-hui Chang
College of Pharmacy, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
De-en Han
College of Pharmacy,, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yu-ying Ji
College of Pharmacy, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Meng-yan Wang
College of Pharmacy, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Dong-hong Li
College of Pharmacy, Henan University of Traditional Chinese Medicin
Email: info@benthamscience.net
Zhi-ling Xu
College of Pharmacy,, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Jia-hao Li
College of Pharmacy, Henan University of Traditional Chinese Medicine
Email: info@benthamscience.net
Sheng-nan Huang
Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine,
Email: info@benthamscience.net
Xia-li Zhu
College of Pharmacy, Henan University of Traditional Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Yong-yan Jia
College of Pharmacy,, Henan University of Traditional Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Shen, S.; Du, M.; Liu, Q.; Gao, P.; Wang, J.; Liu, S.; Gu, L. Development of GLUT1-targeting alkyl glucoside-modified dihydroartemisinin liposomes for cancer therapy. Nanoscale, 2020, 12(42), 21901-21912. doi: 10.1039/D0NR05138A PMID: 33108431
- Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290. doi: 10.1016/j.jconrel.2016.05.045 PMID: 27242199
- Wang, X.; Chen, Y.; Dahmani, F.Z.; Yin, L.; Zhou, J.; Yao, J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials, 2014, 35(26), 7654-7665. doi: 10.1016/j.biomaterials.2014.05.053 PMID: 24927684
- Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57. doi: 10.1016/j.jcis.2017.08.097 PMID: 28881205
- Wu, Q.; Deng, S.; Li, L.; Sun, L.; Yang, X.; Liu, X.; Liu, L.; Qian, Z.; Wei, Y.; Gong, C. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models. Nanoscale, 2013, 5(24), 12480-12493. doi: 10.1039/c3nr04651f PMID: 24165931
- Zhao, J.; Liu, J.; Wei, T.; Ma, X.; Cheng, Q.; Huo, S.; Zhang, C.; Zhang, Y.; Duan, X.; Liang, X.J. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale, 2016, 8(9), 5126-5138. doi: 10.1039/C5NR08966B PMID: 26875690
- Pham, T.N.D.; Stempel, S.; Shields, M.A.; Spaulding, C.; Kumar, K.; Bentrem, D.J.; Matsangou, M.; Munshi, H.G. Quercetin enhances the anti-tumor effects of BET inhibitors by suppressing hnRNPA1. Int. J. Mol. Sci., 2019, 20(17), 4293. doi: 10.3390/ijms20174293 PMID: 31480735
- Wu, T.C.; Chan, S.T.; Chang, C.N.; Yu, P.S.; Chuang, C.H.; Yeh, S.L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109. doi: 10.1016/j.cbi.2018.07.010 PMID: 30016632
- Zhao, H.; Li, L.; Zhang, J.; Zheng, C.; Ding, K.; Xiao, H.; Wang, L.; Zhang, Z. C-C Chemokine Ligand 2 (CCL2) Recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer. ACS Appl. Mater. Interfaces, 2018, 10(37), 31124-31135. doi: 10.1021/acsami.8b11645 PMID: 30141614
- Maurya, A.K.; Vinayak, M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol. Biol. Rep., 2015, 42(9), 1419-1429. doi: 10.1007/s11033-015-3921-7 PMID: 26311153
- Wang, Y.; Han, A.; Chen, E.; Singh, R.K.; Chichester, C.O.; Moore, R.G.; Singh, A.P.; Vorsa, N. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncol., 2015, 46(5), 1924-1934. doi: 10.3892/ijo.2015.2931 PMID: 25776829
- Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396. doi: 10.1016/j.jep.2012.07.005 PMID: 22820241
- Granado-Serrano, A.B.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem. Biol. Interact., 2012, 195(2), 154-164. doi: 10.1016/j.cbi.2011.12.005 PMID: 22197970
- Granado-Serrano, A.B.; Angeles Martín, M.; Bravo, L.; Goya, L.; Ramos, S. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells. Mol. Nutr. Food Res., 2008, 52(4), 457-464. doi: 10.1002/mnfr.200700203 PMID: 18324708
- Tian, F.; Dahmani, F.Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater., 2018, 75, 398-412. doi: 10.1016/j.actbio.2018.05.050 PMID: 29874597
- Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym., 2019, 203, 10-18. doi: 10.1016/j.carbpol.2018.09.020 PMID: 30318192
- Samadi, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Eufrasio-da-silva, T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone-hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int. J. Biol. Macromol., 2021, 182, 11-25. doi: 10.1016/j.ijbiomac.2021.03.146 PMID: 33775763
- Xu, G.; Shi, H.; Ren, L.; Gou, H.; Gong, D.; Gao, X.; Huang, N. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int. J. Nanomedicine, 2015, 10, 2051-2063. PMID: 25844036
- Qian, J.; Liu, S.; Yang, T.; Xiao, Y.; Sun, J.; Zhao, J.; Zhang, Z.; Xie, Y. Polyethyleneimine-tocopherol hydrogen succinate/hyaluronic acid-quercetin (PEI-TOS/HA-QU) core-shell micelles delivering paclitaxel for combinatorial treatment of MDR breast cancer. J. Biomed. Nanotechnol., 2021, 17(3), 382-398. doi: 10.1166/jbn.2021.3032 PMID: 33875073
- Abbaszadeh, S.; Rashidipour, M.; Khosravi, P.; Shahryarhesami, S.; Ashrafi, B.; Kaviani, M.; Moradi Sarabi, M. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. Int. J. Nanomedicine, 2020, 15, 5963-5975. doi: 10.2147/IJN.S263013 PMID: 32884259
- Sadalage, P.S.; Patil, R.V.; Havaldar, D.V.; Gavade, S.S.; Santos, A.C.; Pawar, K.D. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J. Nanobiotechnology, 2021, 19(1), 84. doi: 10.1186/s12951-021-00836-1 PMID: 33766058
- Mutlu Gençkal, H.; Erkisa, M.; Alper, P.; Sahin, S.; Ulukaya, E.; Ari, F. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis, characterization, anti-cancer and anti-oxidant activity. J. Biol. Inorg. Chem., 2020, 25(1), 161-177. doi: 10.1007/s00775-019-01749-z PMID: 31832781
- Du, Y.; He, W.; Xia, Q.; Zhou, W.; Yao, C.; Li, X. Thioether phosphatidylcholine liposomes: A novel ros-responsive platform for drug delivery. ACS Appl. Mater. Interfaces, 2019, 11(41), 37411-37420. doi: 10.1021/acsami.9b08901 PMID: 31556583
- Hu, Q.; Luo, Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr. Polym., 2016, 151, 624-639. doi: 10.1016/j.carbpol.2016.05.109 PMID: 27474608
- Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.C.; Santos, A.M.; Meneguin, A.B.; Chorilli, M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int. J. Biol. Macromol., 2020, 159, 804-822. doi: 10.1016/j.ijbiomac.2020.05.104 PMID: 32425271
- Yadollahi, M.; Farhoudian, S.; Barkhordari, S.; Gholamali, I.; Farhadnejad, H.; Motasadizadeh, H. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int. J. Biol. Macromol., 2016, 82, 273-278. doi: 10.1016/j.ijbiomac.2015.09.064 PMID: 26433177
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces, 2011, 84(1), 163-171. doi: 10.1016/j.colsurfb.2010.12.031 PMID: 21296562
- Rashidipour, M.; Maleki, A.; Kordi, S.; Birjandi, M.; Pajouhi, N.; Mohammadi, E.; Heydari, R.; Rezaee, R.; Rasoulian, B.; Davari, B. Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J. Agric. Food Chem., 2019, 67(20), 5736-5745. doi: 10.1021/acs.jafc.9b01106 PMID: 31042035
- Cresswell, G.M.; Wang, B.; Kischuk, E.M.; Broman, M.M.; Alfar, R.A.; Vickman, R.E.; Dimitrov, D.S.; Kularatne, S.A.; Sundaram, C.P.; Singhal, S.; Eruslanov, E.B.; Crist, S.A.; Elzey, B.D.; Ratliff, T.L.; Low, P.S. Folate receptor beta designates immunosuppressive tumor-associated myeloid cells that can be reprogrammed with folate-targeted drugs. Cancer Res., 2021, 81(3), 671-684. doi: 10.1158/0008-5472.CAN-20-1414 PMID: 33203700
- Unnikrishnan, B.S.; Sen, A.; Preethi, G.U.; Joseph, M.M.; Maya, S.; Shiji, R.; Anusree, K.S.; Sreelekha, T.T. Folic acid-appended galactoxyloglucan-capped iron oxide nanoparticles as a biocompatible nanotheranostic agent for tumor-targeted delivery of doxorubicin. Int. J. Biol. Macromol., 2021, 168, 130-142. doi: 10.1016/j.ijbiomac.2020.11.205 PMID: 33278441
- Yassemi, A.; Kashanian, S.; Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol., 2020, 25(4), 397-407. doi: 10.1080/10837450.2019.1703739 PMID: 31893979
- Mortezazadeh, T.; Gholibegloo, E.; Khoobi, M.; Alam, N.R.; Haghgoo, S.; Mesbahi, A. In vitro and in vivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. J. Drug Target., 2020, 28(5), 533-546. doi: 10.1080/1061186X.2019.1703188 PMID: 31842616
- Angelopoulou, A.; Kolokithas-Ntoukas, A.; Fytas, C.; Avgoustakis, K. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells over expressing the folate receptor. ACS Omega, 2019, 4(26), 22214-22227. doi: 10.1021/acsomega.9b03594 PMID: 31891105
- de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado Botelho, A.F.; Martins Melo, M.; de Miranda, M.C.; Assis Gomes, D.; Dantas Cassali, G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323. doi: 10.1016/j.biopha.2019.109323 PMID: 31400669
- Zhang, B.; Pan, W.; Deng, Y.; He, H.; Gou, J.; Wang, Y.; Zhang, Y.; Yin, T.; Liu, D.; Tang, X. Panax quinquefolium saponin liposomes prepared by passive drug loading for improving intestinal absorption. Drug Dev. Ind. Pharm., 2020, 46(10), 1684-1694. doi: 10.1080/03639045.2020.1820036 PMID: 32996345
- Huang, Y.; Nan, L.; Xiao, C.; Ji, Q.; Li, K.; Wei, Q.; Liu, Y.; Bao, G. Optimum preparation method for self-assembled PEG ylation nano-adjuvant based on rehmannia glutinosa polysaccharide and its immunological effect on macrophages. Int. J. Nanomedicine, 2019, 14, 9361-9375. doi: 10.2147/IJN.S221398 PMID: 31819437
- Blazaki, S.; Pachis, K.; Tzatzarakis, M.; Tsilimbaris, M.; Antimisiaris, S.G. Novel Liposome Aggregate Platform (LAP) system for sustained retention of drugs in the posterior ocular segment following intravitreal injection. Int. J. Pharm., 2020, 576, 118987. doi: 10.1016/j.ijpharm.2019.118987 PMID: 31870961
- Xu, H; Zhang, CH; Guan, X Study on the therapeutic effect of quercetin PLGA-TPGS nanoparticles on ectopic solid tumor of hepatocellular carcinoma in mice. J. China Med. Univ., 2017, 46(09), 791-795.
- T S, A.; Lu, Y.J.; Chen, J.P. Optimization of the preparation of magnetic liposomes for the combined use of magnetic hyperthermia and photothermia in dual magneto-photothermal cancer therapy. Int. J. Mol. Sci., 2020, 21(15), 23. doi: 10.3390/ijms21155187 PMID: 32707876
Supplementary files
