Weapons and Strategies against COVID-19: A Perspective
- Авторы: Mishra R.1, Chaudhary K.1, Mishra I.2
-
Учреждения:
- Department of Pharmacy, GLA University
- , Galgotia College of Pharmacy
- Выпуск: Том 25, № 2 (2024)
- Страницы: 144-158
- Раздел: Biotechnology
- URL: https://vestnik-pp.samgtu.ru/1389-2010/article/view/644741
- DOI: https://doi.org/10.2174/1389201024666230525161432
- ID: 644741
Цитировать
Полный текст
Аннотация
Currently, there are no approved treatments for the fatal infectious coronavirus disease. The process of identifying new applications for approved pharmaceuticals is called drug repurposing. It is a very successful strategy for drug development as it takes less time and cost to uncover a therapeutic agent than the de novo procedure. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the seventh coronavirus that has been identified as a causative agent in humans. SARS-CoV-2 has been recorded in 213 countries, with over 31 million confirmed cases and an estimated death rate of 3%. Medication repositioning may indeed be regarded as a unique therapeutic option for COVID-19 in the present situation. There are various drugs and techniques, which are being used to treat the symptoms of COVID-19. These agents are directed against the viral replication cycle, viral entrance, and viral translocation to the nucleus. Additionally, some can boost the innate antiviral immune response. Drug repurposing is a sensible method and could be a vital approach to treat COVID-19. Combining some of the drugs or supplements with an immunomodulatory diet, psychological assistance, and adherence to standards can ultimately act against COVID-19. A better knowledge of the virus itself and its enzymes will enable the development of more precise and efficient direct-acting antivirals. The primary aim of this review is to present the various aspects of this disease, including various strategies against COVID-19.
Ключевые слова
Об авторах
Raghav Mishra
Department of Pharmacy, GLA University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Kajal Chaudhary
Department of Pharmacy, GLA University
Email: info@benthamscience.net
Isha Mishra
, Galgotia College of Pharmacy
Email: info@benthamscience.net
Список литературы
- Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol. Biosyst., 2015, 11(7), 2096-2102. doi: 10.1039/C5MB00306G PMID: 25998487
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33. doi: 10.1016/j.jhealeco.2016.01.012 PMID: 26928437
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industrys grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214. doi: 10.1038/nrd3078 PMID: 20168317
- Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657. doi: 10.1016/j.trci.2017.10.005 PMID: 29255791
- Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210. doi: 10.1002/wsbm.1337 PMID: 27080087
- Paolini, G.V.; Shapland, R.H.B.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006, 24(7), 805-815. doi: 10.1038/nbt1228 PMID: 16841068
- Koch, U.; Hamacher, M.; Nussbaumer, P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(1), 156-161. doi: 10.1016/j.bbapap.2013.05.010 PMID: 23707564
- Piro, R.M. Network medicine: Linking disorders. Hum. Genet., 2012, 131(12), 1811-1820. doi: 10.1007/s00439-012-1206-y PMID: 22825316
- Huang, F.; Zhang, C.; Liu, Q.; Zhao, Y.; Zhang, Y.; Qin, Y.; Li, X.; Li, C.; Zhou, C.; Jin, N.; Jiang, C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog., 2020, 16(3), e1008341. doi: 10.1371/journal.ppat.1008341 PMID: 32176725
- Scherman, D.; Fetro, C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie, 2020, 75(2), 161-167. doi: 10.1016/j.therap.2020.02.007 PMID: 32164975
- Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272. doi: 10.1016/j.tips.2013.03.004 PMID: 23582281
- Debnath, N.; Al-Mawsawi, L.Q.; Neamati, N. Are we living in the end of the blockbuster drug era? Drug News Perspect., 2010, 23(10), 670-684. doi: 10.1358/dnp.2010.23.10.1506088 PMID: 21180653
- Grabowski, H.G.; Vernon, J. The distribution of sales revenues from pharmaceutical innovation. PharmacoEconomics, 2000, 18(S1), 21-32. doi: 10.2165/00019053-200018001-00005 PMID: 11151306
- Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(S11), S223-S227. doi: 10.1097/01.inf.0000188166.17324.60 PMID: 16378050
- Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019, 11(1), 59. doi: 10.3390/v11010059 PMID: 30646565
- Raj, K. Rohit; Ghosh, A.; Singh, S. Coronavirus as silent killer: Recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease, 2020, 31(2), 137-145. doi: 10.1007/s13337-020-00580-4 PMID: 32313824
- Pilch, B.; Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol., 2006, 7(5), R40. doi: 10.1186/gb-2006-7-5-r40 PMID: 16709260
- Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol., 2006, 7(9), R80. doi: 10.1186/gb-2006-7-9-r80 PMID: 16948836
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8. doi: 10.1016/j.cell.2020.02.052 PMID: 32142651
- Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human protein reference database--2009 update. Nucleic Acids Res, 2009, 37(Database), D767-D772. doi: 10.1093/nar/gkn892 PMID: 18988627
- Rao, R.; Husain, A.; Bharti, A.C.; Kashyap, M.K. Discovery of a novel connecting link between reninangiotensin system and cancer in barretts esophagus by proteomic screening. Proteomics Clin. Appl., 2019, 13(4), 1900006. doi: 10.1002/prca.201900006 PMID: 30891939
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422. doi: 10.1016/S2213-2600(20)30076-X PMID: 32085846
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
- Gupta, N.; Zhao, Y.Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res., 2019, 181, 77-83. doi: 10.1016/j.thromres.2019.07.013 PMID: 31376606
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506. doi: 10.1016/S0140-6736(20)30183-5 PMID: 31986264
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720. doi: 10.1056/NEJMoa2002032 PMID: 32109013
- Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047. doi: 10.1002/jmv.24736 PMID: 27864902
- Báez-Santos, Y.M.; Mielech, A.M.; Deng, X.; Baker, S.; Mesecar, A.D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol., 2014, 88(21), 12511-12527. doi: 10.1128/JVI.01294-14 PMID: 25142582
- Hemida, M.G.; Alnaeem, A. Some one health based control strategies for the middle east respiratory syndrome coronavirus. One Health, 2019, 8(100102), 100102. doi: 10.1016/j.onehlt.2019.100102 PMID: 31485476
- World Health Organization. Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected: interim guidance; World Health Organization, 2019.
- Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051. doi: 10.1002/jmv.24678 PMID: 27604059
- Elfiky, A.A. Zika virus: Novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728. doi: 10.2217/fvl-2017-0081
- Elfiky, A.A. Novel guanosine derivatives as Anti-HCV NS5b polymerase: A QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137. doi: 10.2174/1573406414666181015152511 PMID: 30324891
- Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: A QSAR study. Med. Chem. Res., 2016, 25(5), 1005-1008. doi: 10.1007/s00044-016-1533-y PMID: 32214769
- Elfiky, A.A.; Elshemey, W.M. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J. Med. Virol., 2018, 90(1), 13-18. doi: 10.1002/jmv.24934 PMID: 28922464
- Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A.; Desoky, O.S. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J., 2013, 32(1), 75-80. doi: 10.1007/s10930-013-9462-9 PMID: 23322006
- Elfiky, A.A.; Ismail, A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci., 2019, 238(116958), 116958. doi: 10.1016/j.lfs.2019.116958 PMID: 31628915
- Elfiky, A.A.; Ismail, A.M. Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virol., 2017, 12(7), 339-347. doi: 10.2217/fvl-2017-0027
- Ganesan, A.; Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin. Drug Discov., 2017, 12(4), 407-425. doi: 10.1080/17460441.2017.1291628 PMID: 28164720
- Doublié, S.; Ellenberger, T. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol., 1998, 8(6), 704-712. doi: 10.1016/S0959-440X(98)80089-4 PMID: 9914251
- Elfiky, A.A.; Ismail, A.M. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ. Res., 2018, 29(5), 409-418. doi: 10.1080/1062936X.2018.1454981 PMID: 29652194
- Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, 287(7428), 76-77. doi: 10.1016/S0140-6736(66)92364-6 PMID: 4158999
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523. doi: 10.1016/S0140-6736(20)30154-9 PMID: 31986261
- Guan, W-J.; Ni, Z-Y.; Hu, Y.; Liang, W-H.; Ou, C-Q.; He, J-X.; Liu, L.; Shan, H.; Lei, C-L.; Hui, D.S.C.; Du, B.; Li, L-J.; Zeng, G.; Yuen, K-Y.; Chen, R-C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N-S. Clinical characteristics of 2019 novel coronavirus infection in China. bioRxiv, 2020. doi: 10.1101/2020.02.06.20020974
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirusinfected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207. doi: 10.1056/NEJMoa2001316 PMID: 31995857
- Bauch, C.T.; Lloyd-Smith, J.O.; Coffee, M.P.; Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology, 2005, 16(6), 791-801. doi: 10.1097/01.ede.0000181633.80269.4c PMID: 16222170
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217. doi: 10.1016/j.ijid.2020.01.050 PMID: 32007643
- Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med, 2020, 12(546), eabc1931. doi: 10.1126/scitranslmed.abc1931 PMID: 32493791
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98. doi: 10.1016/j.jare.2020.03.005 PMID: 32257431
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) From publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582. doi: 10.7326/M20-0504 PMID: 32150748
- Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29. doi: 10.1186/s40249-020-00646-x PMID: 32183901
- Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741. doi: 10.1111/all.14238 PMID: 32077115
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel CoronavirusInfected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. doi: 10.1001/jama.2020.1585 PMID: 32031570
- Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J., 2020, 41(19), 1858. doi: 10.1093/eurheartj/ehaa254 PMID: 32227120
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407. doi: 10.1001/jama.2020.2565 PMID: 32083643
- Roumen, R.M.; van Meurs, P.A.; Kuypers, H.H.; Kraak, W.A.; Sauerwein, R.W. Serum interleukin-6 and C reactive protein responses in patients after laparoscopic or conventional cholecystectomy. Eur. J. Surg., 1992, 158(10), 541-544. PMID: 1360826
- Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117. doi: 10.1148/radiol.2020200432 PMID: 32073353
- Vyakaranam, A.R.; Crona, J.; Norlén, O.; Hellman, P.; Sundin, A. 11C-hydroxy-ephedrine-PET/CT in the diagnosis of pheochromocytoma and paraganglioma. Cancers, 2019, 11(6), 847. doi: 10.3390/cancers11060847 PMID: 31248124
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721. doi: 10.1148/radiol.2020200370 PMID: 32053470
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296(2), E32-E40. doi: 10.1148/radiol.2020200642 PMID: 32101510
- Li, X.; Zeng, X.; Liu, B.; Yu, Y. COVID-19 infection presenting with CT halo sign. Radiol. Cardiothorac. Imaging, 2020, 2(1), e200026. doi: 10.1148/ryct.2020200026 PMID: 33778543
- Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin. Microbiol. Infect., 2020, 26(9), 1178-1182. doi: 10.1016/j.cmi.2020.06.019 PMID: 32593741
- Chan, K.H.; Chan, J.F.W.; Tse, H.; Chen, H.; Lau, C.C.Y.; Cai, J.P.; Tsang, A.K.L.; Xiao, X.; To, K.K.W.; Lau, S.K.P.; Woo, P.C.Y.; Zheng, B.J.; Wang, M.; Yuen, K.Y. Cross-reactive antibodies in convalescent SARS patients sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, 67(2), 130-140. doi: 10.1016/j.jinf.2013.03.015 PMID: 23583636
- Hoey, J. Updated SARS case definition using laboratory criteria. CMAJ, 2003, 168(12), 1566-1567. PMID: 12796338
- Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86(12), 1475-1479. doi: 10.1002/jctb.2721 PMID: 32336860
- Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; Valizadeh, S.; Ahmadi, M. Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol., 2020, 89(Pt B), 107088. doi: 10.1016/j.intimp.2020.107088
- Hageman, J.R. The Coronavirus Disease 2019 (COVID-19). Pediatr. Ann., 2020, 49(3), e99-e100. doi: 10.3928/19382359-20200219-01 PMID: 32155273
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
- Stebbing, J.; Krishnan, V.; Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence‐predicted testing in COVID ‐19 patients. EMBO Mol. Med., 2020, 12(8), e12697. doi: 10.15252/emmm.202012697 PMID: 32473600
- Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400. doi: 10.1016/S1473-3099(20)30141-9 PMID: 32113510
- Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against todays diseases. Lancet Infect. Dis., 2003, 3(11), 722-727. doi: 10.1016/S1473-3099(03)00806-5 PMID: 14592603
- Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.F.; Wei, Y.; Jin, N.; Jiang, C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302. doi: 10.1038/cr.2012.165 PMID: 23208422
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73. doi: 10.5582/bst.2020.01047 PMID: 32074550
- Zhengli, S. Remdesivir and Chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30, 269-271.
- Al-Bari, M.A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621. doi: 10.1093/jac/dkv018 PMID: 25693996
- Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849. doi: 10.1021/jm0601856 PMID: 16640347
- Marmor, M.F.; Kellner, U.; Lai, T.Y.Y.; Melles, R.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394. doi: 10.1016/j.ophtha.2016.01.058 PMID: 26992838
- Colson, P.; Rolain, J.M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3), 105923. doi: 10.1016/j.ijantimicag.2020.105923 PMID: 32070753
- Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283. doi: 10.1016/j.jcrc.2020.03.005 PMID: 32173110
- Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ, 2020, 369, m1849. doi: 10.1136/bmj.m1849 PMID: 32409561
- Kalra, R.S.; Tomar, D.; Meena, A.S.; Kandimalla, R. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens, 2020, 9(7), 546. doi: 10.3390/pathogens9070546 PMID: 32645974
- Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256(117883), 117883. doi: 10.1016/j.lfs.2020.117883 PMID: 32497632
- Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938. doi: 10.1016/j.ijantimicag.2020.105938 PMID: 32171740
- Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect., 2017, 5(1), e00293. doi: 10.1002/prp2.293 PMID: 28596841
- McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1), 11-18. doi: 10.1016/0002-9343(83)91265-2 PMID: 6408923
- Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye, 2017, 31(6), 828-845. doi: 10.1038/eye.2016.298 PMID: 28282061
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 PMID: 32192578
- Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409. doi: 10.1016/S0140-6736(20)30858-8 PMID: 32278362
- Vastag, B. Old drugs for a new bug: Influenza, HIV drugs enlisted to fight SARS. JAMA, 2003, 290(13), 1695-1696. doi: 10.1001/jama.290.13.1695 PMID: 14519691
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavirritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799. doi: 10.1056/NEJMoa2001282 PMID: 32187464
- Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L.; Tse, M.W.; Que, T.L.; Peiris, J.S.M.; Sung, J.; Wong, V.C.W.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406. PMID: 14660806
- Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J., 2020, 19, 400-409. doi: 10.17179/excli2020-1189 PMID: 32210741
- Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79. doi: 10.3346/jkms.2020.35.e79 PMID: 32056407
- Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; Qiu, Y.; Wei, G.; Fang, Q.; Zhou, J.; Sheng, J.; Liang, T.; Li, L. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 147-157. doi: 10.3785/j.issn.1008-9292.2020.02.02 PMID: 32391658
- Han, W.; Quan, B.; Guo, Y.; Zhang, J.; Lu, Y.; Feng, G.; Wu, Q.; Fang, F.; Cheng, L.; Jiao, N.; Li, X.; Chen, Q. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J. Med. Virol., 2020, 92(5), 461-463. doi: 10.1002/jmv.25711 PMID: 32073161
- Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023. doi: 10.1093/nsr/nwaa036 PMID: 34676127
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062. doi: 10.1016/S0140-6736(20)30566-3 PMID: 32171076
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256. doi: 10.1136/thorax.2003.012658 PMID: 14985565
- Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoVinfected rhesus macaques. Nat. Med., 2013, 19(10), 1313-1317. doi: 10.1038/nm.3362 PMID: 24013700
- Pasquau, L.J.; Hidalgo, T.C. Chemical characteristics, mechanism of action and antiviral activity of darunavir Enferm. Infecc. Microbiol. Clin., 2008, 26(S10), 3-9. doi: 10.1016/S0213-005X(08)76547-9 PMID: 19195453
- Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J. Biomol. Struct. Dyn., 2021, 39(7), 2607-2616. doi: 10.1080/07391102.2020.1751298 PMID: 32238094
- Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020, 15(8), 1577-1578. doi: 10.1007/s11739-020-02345-9 PMID: 32347443
- Chen, Y.W.; Yiu, C.P.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129. doi: 10.12688/f1000research.22457.2 PMID: 32194944
- Xie, S.; Chen, X.; Qiao, S.; Li, R.; Sun, Y.; Xia, S.; Wang, L.J.; Luo, X.; Deng, R.; Zhou, E.M.; Zhang, G.P. Identification of the RNA pseudoknot within the 3′ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J. Virol., 2018, 92(12), e00097-e18. doi: 10.1128/JVI.00097-18 PMID: 29618647
- Baris, H.E.; Baris, S.; Karakoc-Aydiner, E.; Gokce, I.; Yildiz, N.; Cicekkoku, D.; Ogulur, I.; Ozen, A.; Alpay, H.; Barlan, I. The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur. J. Pediatr., 2016, 175(5), 685-693. doi: 10.1007/s00431-016-2694-x PMID: 26833050
- Thomas, H.; Foster, G.; Platis, D. Mechanisms of action of interferon and nucleoside analogues. J. Hepatol., 2003, 39(S1), 93-98. doi: 10.1016/S0168-8278(03)00207-1 PMID: 14708685
- Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-B1b (MIRACLE Trial): Study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81. doi: 10.1186/s13063-017-2427-0 PMID: 29382391
- Chan, J.F.W.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913. doi: 10.1093/infdis/jiv392 PMID: 26198719
- Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28. doi: 10.1038/s41421-020-0169-8 PMID: 32373347
- Leneva, I.A.; Fediakina, I.T.; Guskova, T.A.; Glushkov, R.G. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Ter. Arkh., 2005, 77(8), 84-88. PMID: 16206613
- Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455. doi: 10.1007/s00705-007-0974-5 PMID: 17497238
- Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res., 2014, 107, 84-94. doi: 10.1016/j.antiviral.2014.04.006 PMID: 24769245
- Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures Vopr. Virusol., 2008, 53(4), 9-13. PMID: 18756809
- Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631. doi: 10.2217/fvl.11.33 PMID: 21765859
- Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5. doi: 10.1016/j.jinf.2020.03.002 PMID: 32171872
- Fedson, D.S.; Opal, S.M.; Rordam, O.M. Hiding in plain sight: An approach to treating patients with severe COVID-19 infection. MBio, 2020, 11(2), e00398-e20. doi: 10.1128/mBio.00398-20 PMID: 32198163
- Wösten-van Asperen, R.M.; Bos, A.P.; Bem, R.A.; Dierdorp, B.S.; Dekker, T.; van Goor, H.; Kamilic, J.; van der Loos, C.M.; van den Berg, E.; Bruijn, M.; van Woensel, J.B.; Lutter, R. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2013, 14(9), e438-e441. doi: 10.1097/PCC.0b013e3182a55735 PMID: 24226567
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Reninangiotensinaldosterone system inhibitors in patients with covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659. doi: 10.1056/NEJMsr2005760 PMID: 32227760
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20. doi: 10.1128/JVI.00127-20 PMID: 31996437
- Phadke, M.; Saunik, S. COVID ‐19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543. doi: 10.1002/ddr.21666 PMID: 32227357
- Tikoo, K.; Patel, G.; Kumar, S.; Karpe, P.A.; Sanghavi, M.; Malek, V.; Srinivasan, K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochem. Pharmacol., 2015, 93(3), 343-351. doi: 10.1016/j.bcp.2014.11.013 PMID: 25482567
- Ferrario, C.M. ACE2: More of Ang-(17) or less Ang II? Curr. Opin. Nephrol. Hypertens., 2011, 20(1), 1-6. doi: 10.1097/MNH.0b013e3283406f57 PMID: 21045683
- Fedson, D.S. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med., 2016, 4(21), 421. doi: 10.21037/atm.2016.11.03 PMID: 27942512
- Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, 13(9), 1972-1988. doi: 10.1080/21645515.2017.1316909 PMID: 28841363
- Bersanelli, M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy, 2020, 12(5), 269-273. doi: 10.2217/imt-2020-0067 PMID: 32212881
- Kelleni, M.T. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol. Res., 2020, 157(104874), 104874. doi: 10.1016/j.phrs.2020.104874 PMID: 32360581
- Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230. doi: 10.1016/j.jiph.2016.04.001 PMID: 27095301
- Simsek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619. doi: 10.3906/sag-2004-145 PMID: 32293834
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178(104787), 104787. doi: 10.1016/j.antiviral.2020.104787 PMID: 32251768
- Mehta, P.; Ciurtin, C.; Scully, M.; Levi, M.; Chambers, R.C. JAK inhibitors in COVID-19: The need for vigilance regarding increased inherent thrombotic risk. Eur. Respir. J., 2020, 56(3), 2001919. doi: 10.1183/13993003.01919-2020 PMID: 32631841
- Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356. doi: 10.1016/j.jinf.2020.04.017 PMID: 32333918
- Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; Hofer, F.; Barouni, R.M.; Musiu, C.; Caligola, S.; Pinton, L.; Torroni, L.; Polati, E.; Donadello, K.; Friso, S.; Pizzolo, F.; Iezzi, M.; Facciotti, F.; Pelicci, P.G.; Righetti, D.; Bazzoni, P.; Rampudda, M.; Comel, A.; Mosaner, W.; Lunardi, C.; Olivieri, O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest., 2020, 130(12), 6409-6416. doi: 10.1172/JCI141772 PMID: 32809969
- Turing, A. M. I. -computing machinery and intelligence. Mind, 1950, LIX(236), 433-460. doi: 10.1093/mind/LIX.236.433
- Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57. doi: 10.1038/d41586-018-05267-x PMID: 29849160
- Mishra, R.; Chaudhary, K.; Mishra, I. AI in Health science: A Perspective. Curr. Pharm. Biotechnol., 2022. doi: 10.2174/1389201023666220929145220 PMID: 36177622
- Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193. doi: 10.1007/s00894-022-05185-w PMID: 35716240
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5. doi: 10.1016/j.molcel.2020.04.022 PMID: 32362314
- Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528. doi: 10.1007/s11224-022-01943-x PMID: 35502321
- Mujwar, S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput. Biol. Med., 2021, 136(104748), 104748. doi: 10.1016/j.compbiomed.2021.104748 PMID: 34388463
- Jain, R.; Mujwar, S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Struct. Chem., 2020, 31(6), 2487-2499. doi: 10.1007/s11224-020-01605-w PMID: 32837119
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; OMeara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; ONeal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; dEnfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14. doi: 10.1038/s41421-020-0153-3 PMID: 32194980
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444. doi: 10.1038/nature14539 PMID: 26017442
- Dettmers, T.; Minervini, P.; Stenetorp, P. Convolutional 2D Knowledge Graph Embeddings; ArXiv, 2017.
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759. doi: 10.1021/jm030644s PMID: 15027866
- Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095. doi: 10.1021/jm070295s PMID: 17663539
- Altaher, Y.; Nakanishi, M.; Kandeel, M. Annotation of camel genome for estimation of drug binding power, evolution and adaption of cytochrome P450 1a2. Int. J. Pharmacol., 2015, 11(3), 243-247. doi: 10.3923/ijp.2015.243.247
- Elhefnawi, M.; ElGamacy, M.; Fares, M. Multiple virtual screening approaches for finding new hepatitis C virus RNA-Dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinformatics, 2012, 13(S17), S5. doi: 10.1186/1471-2105-13-S17-S5
- Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775. doi: 10.1021/cb800176t PMID: 19053243
- Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In silico discovery using virtual screening and molecular docking studies. Interdiscip. Sci., 2016, 8(2), 132-141. doi: 10.1007/s12539-015-0109-8 PMID: 26286008
Дополнительные файлы
