Weapons and Strategies against COVID-19: A Perspective


Цитировать

Полный текст

Аннотация

Currently, there are no approved treatments for the fatal infectious coronavirus disease. The process of identifying new applications for approved pharmaceuticals is called drug repurposing. It is a very successful strategy for drug development as it takes less time and cost to uncover a therapeutic agent than the de novo procedure. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the seventh coronavirus that has been identified as a causative agent in humans. SARS-CoV-2 has been recorded in 213 countries, with over 31 million confirmed cases and an estimated death rate of 3%. Medication repositioning may indeed be regarded as a unique therapeutic option for COVID-19 in the present situation. There are various drugs and techniques, which are being used to treat the symptoms of COVID-19. These agents are directed against the viral replication cycle, viral entrance, and viral translocation to the nucleus. Additionally, some can boost the innate antiviral immune response. Drug repurposing is a sensible method and could be a vital approach to treat COVID-19. Combining some of the drugs or supplements with an immunomodulatory diet, psychological assistance, and adherence to standards can ultimately act against COVID-19. A better knowledge of the virus itself and its enzymes will enable the development of more precise and efficient direct-acting antivirals. The primary aim of this review is to present the various aspects of this disease, including various strategies against COVID-19.

Об авторах

Raghav Mishra

Department of Pharmacy, GLA University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Kajal Chaudhary

Department of Pharmacy, GLA University

Email: info@benthamscience.net

Isha Mishra

, Galgotia College of Pharmacy

Email: info@benthamscience.net

Список литературы

  1. Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol. Biosyst., 2015, 11(7), 2096-2102. doi: 10.1039/C5MB00306G PMID: 25998487
  2. DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33. doi: 10.1016/j.jhealeco.2016.01.012 PMID: 26928437
  3. Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214. doi: 10.1038/nrd3078 PMID: 20168317
  4. Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657. doi: 10.1016/j.trci.2017.10.005 PMID: 29255791
  5. Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210. doi: 10.1002/wsbm.1337 PMID: 27080087
  6. Paolini, G.V.; Shapland, R.H.B.; van Hoorn, W.P.; Mason, J.S.; Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol., 2006, 24(7), 805-815. doi: 10.1038/nbt1228 PMID: 16841068
  7. Koch, U.; Hamacher, M.; Nussbaumer, P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(1), 156-161. doi: 10.1016/j.bbapap.2013.05.010 PMID: 23707564
  8. Piro, R.M. Network medicine: Linking disorders. Hum. Genet., 2012, 131(12), 1811-1820. doi: 10.1007/s00439-012-1206-y PMID: 22825316
  9. Huang, F.; Zhang, C.; Liu, Q.; Zhao, Y.; Zhang, Y.; Qin, Y.; Li, X.; Li, C.; Zhou, C.; Jin, N.; Jiang, C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog., 2020, 16(3), e1008341. doi: 10.1371/journal.ppat.1008341 PMID: 32176725
  10. Scherman, D.; Fetro, C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie, 2020, 75(2), 161-167. doi: 10.1016/j.therap.2020.02.007 PMID: 32164975
  11. Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272. doi: 10.1016/j.tips.2013.03.004 PMID: 23582281
  12. Debnath, N.; Al-Mawsawi, L.Q.; Neamati, N. Are we living in the end of the blockbuster drug era? Drug News Perspect., 2010, 23(10), 670-684. doi: 10.1358/dnp.2010.23.10.1506088 PMID: 21180653
  13. Grabowski, H.G.; Vernon, J. The distribution of sales revenues from pharmaceutical innovation. PharmacoEconomics, 2000, 18(S1), 21-32. doi: 10.2165/00019053-200018001-00005 PMID: 11151306
  14. Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(S11), S223-S227. doi: 10.1097/01.inf.0000188166.17324.60 PMID: 16378050
  15. Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019, 11(1), 59. doi: 10.3390/v11010059 PMID: 30646565
  16. Raj, K. Rohit; Ghosh, A.; Singh, S. Coronavirus as silent killer: Recent advancement to pathogenesis, therapeutic strategy and future perspectives. Virusdisease, 2020, 31(2), 137-145. doi: 10.1007/s13337-020-00580-4 PMID: 32313824
  17. Pilch, B.; Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol., 2006, 7(5), R40. doi: 10.1186/gb-2006-7-5-r40 PMID: 16709260
  18. Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol., 2006, 7(9), R80. doi: 10.1186/gb-2006-7-9-r80 PMID: 16948836
  19. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8. doi: 10.1016/j.cell.2020.02.052 PMID: 32142651
  20. Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; Balakrishnan, L.; Marimuthu, A.; Banerjee, S.; Somanathan, D.S.; Sebastian, A.; Rani, S.; Ray, S.; Harrys Kishore, C.J.; Kanth, S.; Ahmed, M.; Kashyap, M.K.; Mohmood, R.; Ramachandra, Y.L.; Krishna, V.; Rahiman, B.A.; Mohan, S.; Ranganathan, P.; Ramabadran, S.; Chaerkady, R.; Pandey, A. Human protein reference database--2009 update. Nucleic Acids Res, 2009, 37(Database), D767-D772. doi: 10.1093/nar/gkn892 PMID: 18988627
  21. Rao, R.; Husain, A.; Bharti, A.C.; Kashyap, M.K. Discovery of a novel connecting link between renin–angiotensin system and cancer in barrett’s esophagus by proteomic screening. Proteomics Clin. Appl., 2019, 13(4), 1900006. doi: 10.1002/prca.201900006 PMID: 30891939
  22. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  23. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422. doi: 10.1016/S2213-2600(20)30076-X PMID: 32085846
  24. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  25. Gupta, N.; Zhao, Y.Y.; Evans, C.E. The stimulation of thrombosis by hypoxia. Thromb. Res., 2019, 181, 77-83. doi: 10.1016/j.thromres.2019.07.013 PMID: 31376606
  26. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506. doi: 10.1016/S0140-6736(20)30183-5 PMID: 31986264
  27. Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720. doi: 10.1056/NEJMoa2002032 PMID: 32109013
  28. Elfiky, A.A.; Mahdy, S.M.; Elshemey, W.M. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J. Med. Virol., 2017, 89(6), 1040-1047. doi: 10.1002/jmv.24736 PMID: 27864902
  29. Báez-Santos, Y.M.; Mielech, A.M.; Deng, X.; Baker, S.; Mesecar, A.D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol., 2014, 88(21), 12511-12527. doi: 10.1128/JVI.01294-14 PMID: 25142582
  30. Hemida, M.G.; Alnaeem, A. Some one health based control strategies for the middle east respiratory syndrome coronavirus. One Health, 2019, 8(100102), 100102. doi: 10.1016/j.onehlt.2019.100102 PMID: 31485476
  31. World Health Organization. Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (‏MERS-CoV)‏ infection is suspected: interim guidance; World Health Organization, 2019.
  32. Elfiky, A.A. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J. Med. Virol., 2016, 88(12), 2044-2051. doi: 10.1002/jmv.24678 PMID: 27604059
  33. Elfiky, A.A. Zika virus: Novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol., 2017, 12(12), 721-728. doi: 10.2217/fvl-2017-0081
  34. Elfiky, A.A. Novel guanosine derivatives as Anti-HCV NS5b polymerase: A QSAR and molecular docking study. Med. Chem., 2019, 15(2), 130-137. doi: 10.2174/1573406414666181015152511 PMID: 30324891
  35. Elfiky, A.A.; Elshemey, W.M. IDX-184 is a superior HCV direct-acting antiviral drug: A QSAR study. Med. Chem. Res., 2016, 25(5), 1005-1008. doi: 10.1007/s00044-016-1533-y PMID: 32214769
  36. Elfiky, A.A.; Elshemey, W.M. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J. Med. Virol., 2018, 90(1), 13-18. doi: 10.1002/jmv.24934 PMID: 28922464
  37. Elfiky, A.A.; Elshemey, W.M.; Gawad, W.A.; Desoky, O.S. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J., 2013, 32(1), 75-80. doi: 10.1007/s10930-013-9462-9 PMID: 23322006
  38. Elfiky, A.A.; Ismail, A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci., 2019, 238(116958), 116958. doi: 10.1016/j.lfs.2019.116958 PMID: 31628915
  39. Elfiky, A.A.; Ismail, A.M. Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virol., 2017, 12(7), 339-347. doi: 10.2217/fvl-2017-0027
  40. Ganesan, A.; Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin. Drug Discov., 2017, 12(4), 407-425. doi: 10.1080/17460441.2017.1291628 PMID: 28164720
  41. Doublié, S.; Ellenberger, T. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol., 1998, 8(6), 704-712. doi: 10.1016/S0959-440X(98)80089-4 PMID: 9914251
  42. Elfiky, A.A.; Ismail, A.M. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ. Res., 2018, 29(5), 409-418. doi: 10.1080/1062936X.2018.1454981 PMID: 29652194
  43. Tyrrell, D.A.J.; Bynoe, M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, 287(7428), 76-77. doi: 10.1016/S0140-6736(66)92364-6 PMID: 4158999
  44. Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523. doi: 10.1016/S0140-6736(20)30154-9 PMID: 31986261
  45. Guan, W-J.; Ni, Z-Y.; Hu, Y.; Liang, W-H.; Ou, C-Q.; He, J-X.; Liu, L.; Shan, H.; Lei, C-L.; Hui, D.S.C.; Du, B.; Li, L-J.; Zeng, G.; Yuen, K-Y.; Chen, R-C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N-S. Clinical characteristics of 2019 novel coronavirus infection in China. bioRxiv, 2020. doi: 10.1101/2020.02.06.20020974
  46. Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207. doi: 10.1056/NEJMoa2001316 PMID: 31995857
  47. Bauch, C.T.; Lloyd-Smith, J.O.; Coffee, M.P.; Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology, 2005, 16(6), 791-801. doi: 10.1097/01.ede.0000181633.80269.4c PMID: 16222170
  48. Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217. doi: 10.1016/j.ijid.2020.01.050 PMID: 32007643
  49. Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med, 2020, 12(546), eabc1931. doi: 10.1126/scitranslmed.abc1931 PMID: 32493791
  50. Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98. doi: 10.1016/j.jare.2020.03.005 PMID: 32257431
  51. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) From publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582. doi: 10.7326/M20-0504 PMID: 32150748
  52. Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29. doi: 10.1186/s40249-020-00646-x PMID: 32183901
  53. Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741. doi: 10.1111/all.14238 PMID: 32077115
  54. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. doi: 10.1001/jama.2020.1585 PMID: 32031570
  55. Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J., 2020, 41(19), 1858. doi: 10.1093/eurheartj/ehaa254 PMID: 32227120
  56. Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407. doi: 10.1001/jama.2020.2565 PMID: 32083643
  57. Roumen, R.M.; van Meurs, P.A.; Kuypers, H.H.; Kraak, W.A.; Sauerwein, R.W. Serum interleukin-6 and C reactive protein responses in patients after laparoscopic or conventional cholecystectomy. Eur. J. Surg., 1992, 158(10), 541-544. PMID: 1360826
  58. Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117. doi: 10.1148/radiol.2020200432 PMID: 32073353
  59. Vyakaranam, A.R.; Crona, J.; Norlén, O.; Hellman, P.; Sundin, A. 11C-hydroxy-ephedrine-PET/CT in the diagnosis of pheochromocytoma and paraganglioma. Cancers, 2019, 11(6), 847. doi: 10.3390/cancers11060847 PMID: 31248124
  60. Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721. doi: 10.1148/radiol.2020200370 PMID: 32053470
  61. Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology, 2020, 296(2), E32-E40. doi: 10.1148/radiol.2020200642 PMID: 32101510
  62. Li, X.; Zeng, X.; Liu, B.; Yu, Y. COVID-19 infection presenting with CT halo sign. Radiol. Cardiothorac. Imaging, 2020, 2(1), e200026. doi: 10.1148/ryct.2020200026 PMID: 33778543
  63. Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin. Microbiol. Infect., 2020, 26(9), 1178-1182. doi: 10.1016/j.cmi.2020.06.019 PMID: 32593741
  64. Chan, K.H.; Chan, J.F.W.; Tse, H.; Chen, H.; Lau, C.C.Y.; Cai, J.P.; Tsang, A.K.L.; Xiao, X.; To, K.K.W.; Lau, S.K.P.; Woo, P.C.Y.; Zheng, B.J.; Wang, M.; Yuen, K.Y. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, 67(2), 130-140. doi: 10.1016/j.jinf.2013.03.015 PMID: 23583636
  65. Hoey, J. Updated SARS case definition using laboratory criteria. CMAJ, 2003, 168(12), 1566-1567. PMID: 12796338
  66. Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86(12), 1475-1479. doi: 10.1002/jctb.2721 PMID: 32336860
  67. Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; Valizadeh, S.; Ahmadi, M. Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol., 2020, 89(Pt B), 107088. doi: 10.1016/j.intimp.2020.107088
  68. Hageman, J.R. The Coronavirus Disease 2019 (COVID-19). Pediatr. Ann., 2020, 49(3), e99-e100. doi: 10.3928/19382359-20200219-01 PMID: 32155273
  69. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  70. Stebbing, J.; Krishnan, V.; Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence‐predicted testing in COVID ‐19 patients. EMBO Mol. Med., 2020, 12(8), e12697. doi: 10.15252/emmm.202012697 PMID: 32473600
  71. Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400. doi: 10.1016/S1473-3099(20)30141-9 PMID: 32113510
  72. Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect. Dis., 2003, 3(11), 722-727. doi: 10.1016/S1473-3099(03)00806-5 PMID: 14592603
  73. Yan, Y.; Zou, Z.; Sun, Y.; Li, X.; Xu, K.F.; Wei, Y.; Jin, N.; Jiang, C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302. doi: 10.1038/cr.2012.165 PMID: 23208422
  74. Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73. doi: 10.5582/bst.2020.01047 PMID: 32074550
  75. Zhengli, S. Remdesivir and Chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30, 269-271.
  76. Al-Bari, M.A.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621. doi: 10.1093/jac/dkv018 PMID: 25693996
  77. Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849. doi: 10.1021/jm0601856 PMID: 16640347
  78. Marmor, M.F.; Kellner, U.; Lai, T.Y.Y.; Melles, R.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394. doi: 10.1016/j.ophtha.2016.01.058 PMID: 26992838
  79. Colson, P.; Rolain, J.M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3), 105923. doi: 10.1016/j.ijantimicag.2020.105923 PMID: 32070753
  80. Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283. doi: 10.1016/j.jcrc.2020.03.005 PMID: 32173110
  81. Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ, 2020, 369, m1849. doi: 10.1136/bmj.m1849 PMID: 32409561
  82. Kalra, R.S.; Tomar, D.; Meena, A.S.; Kandimalla, R. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens, 2020, 9(7), 546. doi: 10.3390/pathogens9070546 PMID: 32645974
  83. Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256(117883), 117883. doi: 10.1016/j.lfs.2020.117883 PMID: 32497632
  84. Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938. doi: 10.1016/j.ijantimicag.2020.105938 PMID: 32171740
  85. Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect., 2017, 5(1), e00293. doi: 10.1002/prp2.293 PMID: 28596841
  86. McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1), 11-18. doi: 10.1016/0002-9343(83)91265-2 PMID: 6408923
  87. Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye, 2017, 31(6), 828-845. doi: 10.1038/eye.2016.298 PMID: 28282061
  88. Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 PMID: 32192578
  89. Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409. doi: 10.1016/S0140-6736(20)30858-8 PMID: 32278362
  90. Vastag, B. Old drugs for a new bug: Influenza, HIV drugs enlisted to fight SARS. JAMA, 2003, 290(13), 1695-1696. doi: 10.1001/jama.290.13.1695 PMID: 14519691
  91. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799. doi: 10.1056/NEJMoa2001282 PMID: 32187464
  92. Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L.; Tse, M.W.; Que, T.L.; Peiris, J.S.M.; Sung, J.; Wong, V.C.W.; Yuen, K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J., 2003, 9(6), 399-406. PMID: 14660806
  93. Ortega, J.T.; Serrano, M.L.; Pujol, F.H.; Rangel, H.R. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J., 2020, 19, 400-409. doi: 10.17179/excli2020-1189 PMID: 32210741
  94. Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79. doi: 10.3346/jkms.2020.35.e79 PMID: 32056407
  95. Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; Qiu, Y.; Wei, G.; Fang, Q.; Zhou, J.; Sheng, J.; Liang, T.; Li, L. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 147-157. doi: 10.3785/j.issn.1008-9292.2020.02.02 PMID: 32391658
  96. Han, W.; Quan, B.; Guo, Y.; Zhang, J.; Lu, Y.; Feng, G.; Wu, Q.; Fang, F.; Cheng, L.; Jiao, N.; Li, X.; Chen, Q. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J. Med. Virol., 2020, 92(5), 461-463. doi: 10.1002/jmv.25711 PMID: 32073161
  97. Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023. doi: 10.1093/nsr/nwaa036 PMID: 34676127
  98. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062. doi: 10.1016/S0140-6736(20)30566-3 PMID: 32171076
  99. Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.T.; Poon, L.L.M.; Wong, C.L.P.; Guan, Y.; Peiris, J.S.M.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256. doi: 10.1136/thorax.2003.012658 PMID: 14985565
  100. Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nat. Med., 2013, 19(10), 1313-1317. doi: 10.1038/nm.3362 PMID: 24013700
  101. Pasquau, L.J.; Hidalgo, T.C. Chemical characteristics, mechanism of action and antiviral activity of darunavir Enferm. Infecc. Microbiol. Clin., 2008, 26(S10), 3-9. doi: 10.1016/S0213-005X(08)76547-9 PMID: 19195453
  102. Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J. Biomol. Struct. Dyn., 2021, 39(7), 2607-2616. doi: 10.1080/07391102.2020.1751298 PMID: 32238094
  103. Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020, 15(8), 1577-1578. doi: 10.1007/s11739-020-02345-9 PMID: 32347443
  104. Chen, Y.W.; Yiu, C.P.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129. doi: 10.12688/f1000research.22457.2 PMID: 32194944
  105. Xie, S.; Chen, X.; Qiao, S.; Li, R.; Sun, Y.; Xia, S.; Wang, L.J.; Luo, X.; Deng, R.; Zhou, E.M.; Zhang, G.P. Identification of the RNA pseudoknot within the 3′ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J. Virol., 2018, 92(12), e00097-e18. doi: 10.1128/JVI.00097-18 PMID: 29618647
  106. Baris, H.E.; Baris, S.; Karakoc-Aydiner, E.; Gokce, I.; Yildiz, N.; Cicekkoku, D.; Ogulur, I.; Ozen, A.; Alpay, H.; Barlan, I. The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur. J. Pediatr., 2016, 175(5), 685-693. doi: 10.1007/s00431-016-2694-x PMID: 26833050
  107. Thomas, H.; Foster, G.; Platis, D. Mechanisms of action of interferon and nucleoside analogues. J. Hepatol., 2003, 39(S1), 93-98. doi: 10.1016/S0168-8278(03)00207-1 PMID: 14708685
  108. Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-B1b (MIRACLE Trial): Study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81. doi: 10.1186/s13063-017-2427-0 PMID: 29382391
  109. Chan, J.F.W.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913. doi: 10.1093/infdis/jiv392 PMID: 26198719
  110. Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28. doi: 10.1038/s41421-020-0169-8 PMID: 32373347
  111. Leneva, I.A.; Fediakina, I.T.; Gus’kova, T.A.; Glushkov, R.G. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Ter. Arkh., 2005, 77(8), 84-88. PMID: 16206613
  112. Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455. doi: 10.1007/s00705-007-0974-5 PMID: 17497238
  113. Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res., 2014, 107, 84-94. doi: 10.1016/j.antiviral.2014.04.006 PMID: 24769245
  114. Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures Vopr. Virusol., 2008, 53(4), 9-13. PMID: 18756809
  115. Barnard, D.L.; Kumaki, Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol., 2011, 6(5), 615-631. doi: 10.2217/fvl.11.33 PMID: 21765859
  116. Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5. doi: 10.1016/j.jinf.2020.03.002 PMID: 32171872
  117. Fedson, D.S.; Opal, S.M.; Rordam, O.M. Hiding in plain sight: An approach to treating patients with severe COVID-19 infection. MBio, 2020, 11(2), e00398-e20. doi: 10.1128/mBio.00398-20 PMID: 32198163
  118. Wösten-van Asperen, R.M.; Bos, A.P.; Bem, R.A.; Dierdorp, B.S.; Dekker, T.; van Goor, H.; Kamilic, J.; van der Loos, C.M.; van den Berg, E.; Bruijn, M.; van Woensel, J.B.; Lutter, R. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2013, 14(9), e438-e441. doi: 10.1097/PCC.0b013e3182a55735 PMID: 24226567
  119. Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659. doi: 10.1056/NEJMsr2005760 PMID: 32227760
  120. Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20. doi: 10.1128/JVI.00127-20 PMID: 31996437
  121. Phadke, M.; Saunik, S. COVID ‐19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543. doi: 10.1002/ddr.21666 PMID: 32227357
  122. Tikoo, K.; Patel, G.; Kumar, S.; Karpe, P.A.; Sanghavi, M.; Malek, V.; Srinivasan, K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochem. Pharmacol., 2015, 93(3), 343-351. doi: 10.1016/j.bcp.2014.11.013 PMID: 25482567
  123. Ferrario, C.M. ACE2: More of Ang-(1–7) or less Ang II? Curr. Opin. Nephrol. Hypertens., 2011, 20(1), 1-6. doi: 10.1097/MNH.0b013e3283406f57 PMID: 21045683
  124. Fedson, D.S. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med., 2016, 4(21), 421. doi: 10.21037/atm.2016.11.03 PMID: 27942512
  125. Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, 13(9), 1972-1988. doi: 10.1080/21645515.2017.1316909 PMID: 28841363
  126. Bersanelli, M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy, 2020, 12(5), 269-273. doi: 10.2217/imt-2020-0067 PMID: 32212881
  127. Kelleni, M.T. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol. Res., 2020, 157(104874), 104874. doi: 10.1016/j.phrs.2020.104874 PMID: 32360581
  128. Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230. doi: 10.1016/j.jiph.2016.04.001 PMID: 27095301
  129. Simsek Yavuz, S.; Ünal, S. Antiviral treatment of COVID-19. Turk. J. Med. Sci., 2020, 50(SI-1), 611-619. doi: 10.3906/sag-2004-145 PMID: 32293834
  130. Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178(104787), 104787. doi: 10.1016/j.antiviral.2020.104787 PMID: 32251768
  131. Mehta, P.; Ciurtin, C.; Scully, M.; Levi, M.; Chambers, R.C. JAK inhibitors in COVID-19: The need for vigilance regarding increased inherent thrombotic risk. Eur. Respir. J., 2020, 56(3), 2001919. doi: 10.1183/13993003.01919-2020 PMID: 32631841
  132. Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356. doi: 10.1016/j.jinf.2020.04.017 PMID: 32333918
  133. Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; Hofer, F.; Barouni, R.M.; Musiu, C.; Caligola, S.; Pinton, L.; Torroni, L.; Polati, E.; Donadello, K.; Friso, S.; Pizzolo, F.; Iezzi, M.; Facciotti, F.; Pelicci, P.G.; Righetti, D.; Bazzoni, P.; Rampudda, M.; Comel, A.; Mosaner, W.; Lunardi, C.; Olivieri, O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Invest., 2020, 130(12), 6409-6416. doi: 10.1172/JCI141772 PMID: 32809969
  134. Turing, A. M. I. -computing machinery and intelligence. Mind, 1950, LIX(236), 433-460. doi: 10.1093/mind/LIX.236.433
  135. Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57. doi: 10.1038/d41586-018-05267-x PMID: 29849160
  136. Mishra, R.; Chaudhary, K.; Mishra, I. AI in Health science: A Perspective. Curr. Pharm. Biotechnol., 2022. doi: 10.2174/1389201023666220929145220 PMID: 36177622
  137. Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193. doi: 10.1007/s00894-022-05185-w PMID: 35716240
  138. Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5. doi: 10.1016/j.molcel.2020.04.022 PMID: 32362314
  139. Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528. doi: 10.1007/s11224-022-01943-x PMID: 35502321
  140. Mujwar, S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput. Biol. Med., 2021, 136(104748), 104748. doi: 10.1016/j.compbiomed.2021.104748 PMID: 34388463
  141. Jain, R.; Mujwar, S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Struct. Chem., 2020, 31(6), 2487-2499. doi: 10.1007/s11224-020-01605-w PMID: 32837119
  142. Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
  143. Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14. doi: 10.1038/s41421-020-0153-3 PMID: 32194980
  144. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444. doi: 10.1038/nature14539 PMID: 26017442
  145. Dettmers, T.; Minervini, P.; Stenetorp, P. Convolutional 2D Knowledge Graph Embeddings; ArXiv, 2017.
  146. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  147. Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759. doi: 10.1021/jm030644s PMID: 15027866
  148. Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095. doi: 10.1021/jm070295s PMID: 17663539
  149. Altaher, Y.; Nakanishi, M.; Kandeel, M. Annotation of camel genome for estimation of drug binding power, evolution and adaption of cytochrome P450 1a2. Int. J. Pharmacol., 2015, 11(3), 243-247. doi: 10.3923/ijp.2015.243.247
  150. Elhefnawi, M.; ElGamacy, M.; Fares, M. Multiple virtual screening approaches for finding new hepatitis C virus RNA-Dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors. BMC Bioinformatics, 2012, 13(S17), S5. doi: 10.1186/1471-2105-13-S17-S5
  151. Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775. doi: 10.1021/cb800176t PMID: 19053243
  152. Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In silico discovery using virtual screening and molecular docking studies. Interdiscip. Sci., 2016, 8(2), 132-141. doi: 10.1007/s12539-015-0109-8 PMID: 26286008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024