Deciphering Immune-related Gene Signatures in Diabetic Retinopathy: Insights from In silico Analysis and In vitro Experiment


Cite item

Full Text

Abstract

Background:Diabetes retinopathy (DR) is one of the most common microvascular consequences of diabetes, and the economic burden is increasing. Our aim is to decipher the relevant mechanisms of immune-related gene features in DR and explore biomarkers targeting DR. Provide a basis for the treatment and prevention of DR.

Methods:The immune infiltration enrichment score of DR patients was evaluated from the single- cell RNA sequencing dataset, and the samples were divided into low immune subgroups and high immune subgroups based on this result. Through weighted gene correlation network analysis, differentially expressed genes (DEGs) between two subgroups were identified and crossed with genes with the strongest immune association, resulting in significant key genes. Then divide the DR individuals into two immune related differentially expressed gene (IDEG) clusters, A and B. Submit cross DEGs between two clusters through Gene Set Enrichment Analysis (GSEA) to further explore their functions. A protein-protein interaction (PPI) network of IDEG was established to further identify central genes associated with DR. Use the discovered central genes to predict the regulatory network involved in the pathogenesis of DR. Then, the role of the identified hub gene in the pathogenesis of DR was further studied through in vitro experiments.

Results:We found that the immune scores of DR and control groups were different, and 27 IDEGs were found in the DR subgroup. Compared with cluster A, the proportion of cytotoxic lymphocytes, B lineage, monocyte lineage, and fibroblasts in DR patients in cluster B is significantly enriched. GSEA indicates that these genes are associated with T cell activation, regulation of immune response processes, lymphocyte-mediated immunity, TNF signaling pathway, and other signaling pathways. The PPI network subsequently identified 10 hub genes in DR, including SIGLEC10, RGS10, PENK, FGD2, LILRA6, CIITA, EGR2, SIGLEC7, LILRB1, and CD300LB. The upstream regulatory network and lncRNA miRNA mRNA ceRNA network of these hub genes were ultimately constructed. The discovery and identification of these genes will provide biomarkers for targeted prediction and treatment of DR.

Conclusion:By integrating bioinformatics analysis and in vitro experiments, we have identified a set of central genes, indicating that these genes can serve as potential biomarkers for DR, which may be promising targets for future DR immunotherapy interventions.

About the authors

Nan Xia

Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Qingsong Zhao

Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Jinmei Xu

Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Zhifeng Cheng

Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hainsworth, D.P.; Bebu, I.; Aiello, L.P.; Sivitz, W.; Gubitosi-Klug, R.; Malone, J.; White, N.H.; Danis, R.; Wallia, A.; Gao, X.; Barkmeier, A.J.; Das, A.; Patel, S.; Gardner, T.W.; Lachin, J.M. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study. Diabetes Care, 2019, 42(5), 875-882. doi: 10.2337/dc18-2308 PMID: 30833368
  2. Song, K.H.; Jeong, J.S.; Kim, M.K.; Kwon, H.S.; Baek, K.H.; Ko, S.H.; Ahn, Y.B. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J. Diabetes Investig., 2019, 10(3), 745-752. doi: 10.1111/jdi.12953 PMID: 30300472
  3. Leasher, J.L.; Bourne, R.R.A.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Naidoo, K.; Pesudovs, K.; Price, H.; White, R.A.; Wong, T.Y.; Resnikoff, S.; Taylor, H.R. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: A meta-analysis from 1990 to 2010. Diabetes Care, 2016, 39(9), 1643-1649. doi: 10.2337/dc15-2171 PMID: 27555623
  4. Takao, T.; Suka, M.; Yanagisawa, H.; Kasuga, M. Combined effect of diabetic retinopathy and diabetic kidney disease on all‐cause, cancer, vascular and non‐cancer non‐vascular mortality in patients with type 2 diabetes: A real‐world longitudinal study. J. Diabetes Investig., 2020, 11(5), 1170-1180. doi: 10.1111/jdi.13265 PMID: 32267626
  5. Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers, 2016, 2(1), 16012. doi: 10.1038/nrdp.2016.12 PMID: 27159554
  6. Kobayashi, S.; Nagao, M.; Asai, A.; Fukuda, I.; Oikawa, S.; Sugihara, H. Severity and multiplicity of microvascular complications are associated with QT interval prolongation in patients with type 2 diabetes. J. Diabetes Investig., 2018, 9(4), 946-951. doi: 10.1111/jdi.12772 PMID: 29095573
  7. Filardi, T.; Ghinassi, B.; Di Baldassarre, A.; Tanzilli, G.; Morano, S.; Lenzi, A.; Basili, S.; Crescioli, C. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte. Int. J. Mol. Sci., 2019, 20(13), 3299. doi: 10.3390/ijms20133299 PMID: 31284374
  8. Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J., 2016, 92(1084), 63-69. doi: 10.1136/postgradmedj-2015-133281 PMID: 26621825
  9. Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: Vascular and inflammatory disease. J. Diabetes Res., 2015, 2015, 1-16. doi: 10.1155/2015/582060 PMID: 26137497
  10. Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Rudnev, D.; Evangelista, C.; Kim, I.F.; Soboleva, A.; Tomashevsky, M.; Edgar, R. NCBI GEO: Mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res., 2007, 35(Database), D760-D765. doi: 10.1093/nar/gkl887 PMID: 17099226
  11. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
  12. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  13. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573. doi: 10.1093/bioinformatics/btq170 PMID: 20427518
  14. Rody, A.; Holtrich, U.; Pusztai, L.; Liedtke, C.; Gaetje, R.; Ruckhaeberle, E.; Solbach, C.; Hanker, L.; Ahr, A.; Metzler, D.; Engels, K.; Karn, T.; Kaufmann, M. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res., 2009, 11(2), R15. doi: 10.1186/bcr2234 PMID: 19272155
  15. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  16. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  17. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29. doi: 10.1038/75556 PMID: 10802651
  18. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 1999, 27(1), 29-34. doi: 10.1093/nar/27.1.29 PMID: 9847135
  19. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425. doi: 10.1016/j.cels.2015.12.004 PMID: 26771021
  20. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  21. Chin, CH.; Chen, SH.; Wu, HH.; Ho, CW.; Ko, MT. Lin, CY cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
  22. Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64. doi: 10.1093/nar/gky311 PMID: 29912392
  23. Kursa, M.B. Robustness of random forest-based gene selection methods. BMC Bioinformatics, 2014, 15(1), 8. doi: 10.1186/1471-2105-15-8 PMID: 24410865
  24. Clarke, D.J.B.; Kuleshov, M.V.; Schilder, B.M.; Torre, D.; Duffy, M.E.; Keenan, A.B.; Lachmann, A.; Feldmann, A.S.; Gundersen, G.W.; Silverstein, M.C.; Wang, Z.; Ma’ayan, A. eXpression2Kinases (X2K) Web: Linking expression signatures to upstream cell signaling networks. Nucleic Acids Res., 2018, 46(W1), W171-W179. doi: 10.1093/nar/gky458 PMID: 29800326
  25. Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; Theodorescu, D.; Theodorescu, D. The multiMiR R package and database: Integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res., 2014, 42(17), e133. doi: 10.1093/nar/gku631 PMID: 25063298
  26. Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97. doi: 10.1093/nar/gkt1248 PMID: 24297251
  27. Beltramo, E.; Porta, M. Pericyte loss in diabetic retinopathy: Mechanisms and consequences. Curr. Med. Chem., 2013, 20(26), 3218-3225. doi: 10.2174/09298673113209990022 PMID: 23745544
  28. Mrugacz, M.; Bryl, A.; Zorena, K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J. Clin. Med., 2021, 10(3), 458. doi: 10.3390/jcm10030458 PMID: 33504108
  29. Kadłubowska, J.; Malaguarnera, L.; Wąż, P.; Zorena, K. Neurodegeneration and neuroinflammation in diabetic retinopathy: Potential approaches to delay neuronal loss. Curr. Neuropharmacol., 2016, 14(8), 831-839. doi: 10.2174/1570159X14666160614095559 PMID: 27306035
  30. dell’Omo, R.; Semeraro, F.; Bamonte, G.; Cifariello, F.; Romano, M.R.; Costagliola, C. Vitreous mediators in retinal hypoxic diseases. Mediators Inflamm., 2013, 2013, 1-16. doi: 10.1155/2013/935301 PMID: 23365490
  31. Yoshida, S.; Yoshida, A.; Ishibashi, T. Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: Implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch. Clin. Exp. Ophthalmol., 2004, 242(5), 409-413. doi: 10.1007/s00417-004-0874-2 PMID: 15029502
  32. Zhang, W.; Liu, H.; Rojas, M.; Caldwell, R.W.; Caldwell, R.B. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy, 2011, 3(5), 609-628. doi: 10.2217/imt.11.24 PMID: 21554091
  33. Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186. doi: 10.1016/j.preteyeres.2015.08.001 PMID: 26297071
  34. Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res., 2011, 30(5), 343-358. doi: 10.1016/j.preteyeres.2011.05.002 PMID: 21635964
  35. Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front. Immunol., 2019, 10, 1618. doi: 10.3389/fimmu.2019.01618 PMID: 31379825
  36. Moratz, C.; Harrison, K.; Kehrl, J.H. Regulation of chemokine-induced lymphocyte migration by RGS proteins. Methods Enzymol., 2004, 389, 15-32. doi: 10.1016/S0076-6879(04)89002-5 PMID: 15313557
  37. Jakobsdottir, J.; Conley, Y.P.; Weeks, D.E.; Mah, T.S.; Ferrell, R.E.; Gorin, M.B. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet., 2005, 77(3), 389-407. doi: 10.1086/444437 PMID: 16080115

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers