Emerging Therapeutic Approaches Targeting Ferroptosis in Cancer: Focus on Immunotherapy and Nanotechnology
- Authors: Yu Z.1, Mo Z.2, Qiu Y.1, Lu H.1, Zheng B.2, Liu L.1
-
Affiliations:
- Department of General Surgery, he Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
- Department of Histology and Embryology, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University
- Issue: Vol 25, No 15 (2024)
- Pages: 2012-2021
- Section: Biotechnology
- URL: https://vestnik-pp.samgtu.ru/1389-2010/article/view/644625
- DOI: https://doi.org/10.2174/0113892010276664231228124157
- ID: 644625
Cite item
Full Text
Abstract
:Ferroptosis is a newly discovered form of programmed cell death characterized by iron overload, ROS accumulation, and lipid peroxidation. It is distinguished by unique morphological, biochemical, and genetic features and stands apart from other known regulated cell death mechanisms. Studies have demonstrated a close association between ferroptosis and various cancers, including liver cancer, lung cancer, renal cell carcinoma, colorectal cancer, pancreatic cancer, and ovarian cancer. Inducing ferroptosis has shown promising results in inhibiting tumor growth and reversing tumor progression. However, the challenge lies in regulating ferroptosis in vivo due to the scarcity of potent compounds that can activate it. Integrating emerging biomedical discoveries and technological innovations with conventional therapies is imperative. Notably, considerable progress has been made in cancer treatment by leveraging immunotherapy and nanotechnology to trigger ferroptosis. This review explores the relationship between ferroptosis and emerging immunotherapies and nanotechnologies, along with their potential underlying mechanisms, offering valuable insights for developing novel cancer treatment strategies.
About the authors
Zongchao Yu
Department of General Surgery, he Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Zhongcheng Mo
Department of Histology and Embryology, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University
Email: info@benthamscience.net
Yuan Qiu
Department of General Surgery, he Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Hengzhe Lu
Department of General Surgery, he Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
Email: info@benthamscience.net
Biao Zheng
Department of Histology and Embryology, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University
Email: info@benthamscience.net
Longfei Liu
Department of General Surgery, he Affiliated Nanhua Hospital, Hengyang Medical School, University of South China
Author for correspondence.
Email: info@benthamscience.net
References
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35, S185-S198.
- Wellenstein, M.D.; de Visser, K.E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 2018, 48(3), 399-416. doi: 10.1016/j.immuni.2018.03.004 PMID: 29562192
- Okusaka, T.; Furuse, J. Recent advances in chemotherapy for pancreatic cancer: evidence from Japan and recommendations in guidelines. J. Gastroenterol., 2020, 55(4), 369-382. doi: 10.1007/s00535-020-01666-y PMID: 31997007
- Pugh, T.J.; Nguyen, B.N.; Kanke, J.E.; Johnson, J.L.; Hoffman, K.E. Radiation therapy modalities in prostate cancer. J. Natl. Compr. Canc. Netw., 2013, 11(4), 414-421. doi: 10.6004/jnccn.2013.0056 PMID: 23584344
- Wang, L.; Qin, W.; Huo, Y.J.; Li, X.; Shi, Q.; Rasko, J.E.J.; Janin, A.; Zhao, W.L. Advances in targeted therapy for malignant lymphoma. Signal Transduct. Target. Ther., 2020, 5(1), 15. doi: 10.1038/s41392-020-0113-2 PMID: 32296035
- Tang, Z.; Zeng, Q.; Li, Y.; Zhang, X.; Ma, J.; Suto, M.J.; Xu, B.; Yi, N. Development of a radiosensitivity gene signature for patients with soft tissue sarcoma. Oncotarget, 2017, 8(16), 27428-27439. doi: 10.18632/oncotarget.16194 PMID: 28404969
- Zraik, I.M.; Heß-Busch, Y. Management of chemotherapy side effects and their long-term sequelae. Urologe A, 2021, 60(7), 862-871. doi: 10.1007/s00120-021-01569-7 PMID: 34185118
- Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem. Soc. Trans., 2020, 48(2), 657-665. doi: 10.1042/BST20191055 PMID: 32311020
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
- Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296. doi: 10.1016/S1535-6108(03)00050-3 PMID: 12676586
- Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245. doi: 10.1016/j.chembiol.2008.02.010 PMID: 18355723
- Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med., 2017, 21(4), 648-657. doi: 10.1111/jcmm.13008 PMID: 27860262
- Djulbegovic, M.B.; Uversky, V.N. Ferroptosis An iron- and disorder-dependent programmed cell death. Int. J. Biol. Macromol., 2019, 135, 1052-1069. doi: 10.1016/j.ijbiomac.2019.05.221 PMID: 31175900
- Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507. doi: 10.1038/nrc2663 PMID: 19550425
- Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63. doi: 10.1038/nrm3722 PMID: 24355989
- Luna-Vargas, M.P.A.; Chipuk, J.E. Physiological and pharmacological control of BAK, BAX, and beyond. Trends Cell Biol., 2016, 26(12), 906-917. doi: 10.1016/j.tcb.2016.07.002 PMID: 27498846
- Murphy, J.M.; Czabotar, P.E.; Hildebrand, J.M.; Lucet, I.S.; Zhang, J.G.; Alvarez-Diaz, S.; Lewis, R.; Lalaoui, N.; Metcalf, D.; Webb, A.I.; Young, S.N.; Varghese, L.N.; Tannahill, G.M.; Hatchell, E.C.; Majewski, I.J.; Okamoto, T.; Dobson, R.C.J.; Hilton, D.J.; Babon, J.J.; Nicola, N.A.; Strasser, A.; Silke, J.; Alexander, W.S. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity, 2013, 39(3), 443-453. doi: 10.1016/j.immuni.2013.06.018 PMID: 24012422
- Xu, D.; Zou, C.; Yuan, J. Genetic regulation of RIPK1 and necroptosis. Annu. Rev. Genet., 2021, 55(1), 235-263. doi: 10.1146/annurev-genet-071719-022748 PMID: 34813352
- Zhang, T.; Wang, Y.; Inuzuka, H.; Wei, W. Necroptosis pathways in tumorigenesis. Semin. Cancer Biol., 2022, 86(Pt 3), 32-40. doi: 10.1016/j.semcancer.2022.07.007 PMID: 35908574
- Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265(1), 130-142. doi: 10.1111/imr.12287 PMID: 25879289
- Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, 11(12), 1136-1142. doi: 10.1038/ni.1960 PMID: 21057511
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Debnath, J.; Deretic, V.; Dikic, I.; Eskelinen, E.L.; Fimia, G.M.; Fulda, S.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Harper, J.W.; Jäättelä, M.; Johansen, T.; Juhasz, G.; Kimmelman, A.C.; Kraft, C.; Ktistakis, N.T.; Kumar, S.; Levine, B.; Lopez-Otin, C.; Madeo, F.; Martens, S.; Martinez, J.; Melendez, A.; Mizushima, N.; Münz, C.; Murphy, L.O.; Penninger, J.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Santambrogio, L.; Scorrano, L.; Simon, A.K.; Simon, H.U.; Simonsen, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Kroemer, G. Molecular definitions of autophagy and related processes. EMBO J., 2017, 36(13), 1811-1836. doi: 10.15252/embj.201796697 PMID: 28596378
- Pietrocola, F.; Izzo, V.; Niso-Santano, M.; Vacchelli, E.; Galluzzi, L.; Maiuri, M.C.; Kroemer, G. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol., 2013, 23(5), 310-322. doi: 10.1016/j.semcancer.2013.05.008 PMID: 23726895
- Wang, H.; Liu, C.; Zhao, Y.; Gao, G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol., 2020, 99(1), 151058. doi: 10.1016/j.ejcb.2019.151058 PMID: 31810634
- Li, Y.; Zeng, X.; Lu, D.; Yin, M.; Shan, M.; Gao, Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum. Reprod., 2021, 36(4), 951-964. doi: 10.1093/humrep/deaa363 PMID: 33378529
- Haschka, D.; Hoffmann, A.; Weiss, G. Iron in immune cell function and host defense. Semin. Cell Dev. Biol., 2021, 115, 27-36. doi: 10.1016/j.semcdb.2020.12.005 PMID: 33386235
- Zhu, J.; Xiong, Y.; Zhang, Y.; Wen, J.; Cai, N.; Cheng, K.; Liang, H.; Zhang, W. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/8810785 PMID: 33425217
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379. doi: 10.1038/cdd.2015.158 PMID: 26794443
- Dixon, S.J.; Pratt, D.A. Ferroptosis: A flexible constellation of related biochemical mechanisms. Mol. Cell, 2023, 83(7), 1030-1042. doi: 10.1016/j.molcel.2023.03.005 PMID: 36977413
- Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8), 599-620. doi: 10.1007/s13238-020-00789-5 PMID: 33000412
- Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol., 2015, 10(7), 1604-1609. doi: 10.1021/acschembio.5b00245 PMID: 25965523
- Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; ODonnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191. doi: 10.1038/ncb3064 PMID: 25402683
- Li, Y.; Feng, D.; Wang, Z.; Zhao, Y.; Sun, R.; Tian, D.; Liu, D.; Zhang, F.; Ning, S.; Yao, J.; Tian, X. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ., 2019, 26(11), 2284-2299. doi: 10.1038/s41418-019-0299-4 PMID: 30737476
- Liu, W.; Östberg, N.; Yalcinkaya, M.; Dou, H.; Endo-Umeda, K.; Tang, Y.; Hou, X.; Xiao, T.; Fidler, T.P.; Abramowicz, S.; Yang, Y.G.; Soehnlein, O.; Tall, A.R.; Wang, N. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Invest., 2022, 132(13), e155724. doi: 10.1172/JCI155724 PMID: 35587375
- Derry, P.J.; Hegde, M.L.; Jackson, G.R.; Kayed, R.; Tour, J.M.; Tsai, A.L.; Kent, T.A. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimers disease from a ferroptosis perspective. Prog. Neurobiol., 2020, 184, 101716. doi: 10.1016/j.pneurobio.2019.101716 PMID: 31604111
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
- Stockwell, B.R.; Jiang, X.; Gu, W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol., 2020, 30(6), 478-490.
- Yang, W.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331. doi: 10.1016/j.cell.2013.12.010 PMID: 24439385
- Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystineglutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523. doi: 10.7554/eLife.02523 PMID: 24844246
- Toyokuni, S.; Ito, F.; Yamashita, K.; Okazaki, Y.; Akatsuka, S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic. Biol. Med., 2017, 108, 610-626. doi: 10.1016/j.freeradbiomed.2017.04.024 PMID: 28433662
- Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175. doi: 10.1016/j.canlet.2016.07.033 PMID: 27477901
- Devisscher, L.; Van Coillie, S.; Hofmans, S.; Van Rompaey, D.; Goossens, K.; Meul, E.; Maes, L.; De Winter, H.; Van Der Veken, P.; Vandenabeele, P.; Berghe, T.V.; Augustyns, K. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy. J. Med. Chem., 2018, 61(22), 10126-10140. doi: 10.1021/acs.jmedchem.8b01299 PMID: 30354101
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med., 2014, 66, 3-12. doi: 10.1016/j.freeradbiomed.2013.03.022 PMID: 23557727
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98. doi: 10.1038/nchembio.2239 PMID: 27842070
- Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J.C.; Mazière, J.C.; Chauffert, B.; Galmiche, A. Iron‐dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742. doi: 10.1002/ijc.28159 PMID: 23505071
- Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484. doi: 10.1021/acschembio.9b00939 PMID: 31899616
- Li, Y.; Wei, X.; Tao, F.; Deng, C.; Lv, C.; Chen, C.; Cheng, Y. The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomed. Mater., 2021, 16(4), 042013. doi: 10.1088/1748-605X/ac058a PMID: 34038885
- Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685. doi: 10.1158/2159-8290.CD-19-0338 PMID: 31554642
- Li, Z.; Rong, L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomater. Sci., 2020, 8(22), 6272-6285. doi: 10.1039/D0BM01168A PMID: 33016289
- Hao, X.; Zheng, Z.; Liu, H.; Zhang, Y.; Kang, J.; Kong, X.; Rong, D.; Sun, G.; Sun, G.; Liu, L.; Yu, H.; Tang, W.; Wang, X. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol., 2022, 56, 102463. doi: 10.1016/j.redox.2022.102463 PMID: 36108528
- Liao, P.; Wang, W.; Wang, W.; Kryczek, I.; Li, X.; Bian, Y.; Sell, A.; Wei, S.; Grove, S.; Johnson, J.K.; Kennedy, P.D.; Gijón, M.; Shah, Y.M.; Zou, W. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell, 2022, 40(4), 365-378.e6. doi: 10.1016/j.ccell.2022.02.003 PMID: 35216678
- Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274. doi: 10.1038/s41586-019-1170-y PMID: 31043744
- Tao, C.; Rouhi, J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ. Res., 2023, 238(Pt 1), 117113. doi: 10.1016/j.envres.2023.117113 PMID: 37696325
- Deng, S.; Gu, J.; Jiang, Z.; Cao, Y.; Mao, F.; Xue, Y.; Wang, J.; Dai, K.; Qin, L.; Liu, K.; Wu, K.; He, Q.; Cai, K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J. Nanobiotechnology, 2022, 20(1), 415. doi: 10.1186/s12951-022-01613-4 PMID: 36109734
- Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev., 2021, 50(10), 6013-6041. doi: 10.1039/D0CS00718H PMID: 34027953
- Xu, Y.; Qin, Z.; Ma, J.; Cao, W.; Zhang, P. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur. J. Pharmacol., 2020, 880, 173198. doi: 10.1016/j.ejphar.2020.173198 PMID: 32473167
- Zhu, T.; Shi, L.; Yu, C.; Dong, Y.; Qiu, F.; Shen, L.; Qian, Q.; Zhou, G.; Zhu, X. Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics, 2019, 9(11), 3293-3307. doi: 10.7150/thno.32867 PMID: 31244955
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
- Valashedi, M.R.; Najafi-Ghalehlou, N.; Nikoo, A.; Bamshad, C.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roushandeh, A.M.; Roudkenar, M.H. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci., 2021, 285, 119958. doi: 10.1016/j.lfs.2021.119958 PMID: 34534562
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950. doi: 10.1152/physrev.00026.2013 PMID: 24987008
- Breuer, W.; Shvartsman, M.; Cabantchik, Z.I. Intracellular labile iron. Int. J. Biochem. Cell Biol., 2008, 40(3), 350-354. doi: 10.1016/j.biocel.2007.03.010 PMID: 17451993
- Hassannia, B.; Vandenabeele, P.; Vanden, B.T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019, 35(6), 830-849. doi: 10.1016/j.ccell.2019.04.002 PMID: 31105042
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
- Tsoi, J.; Robert, L.; Paraiso, K.; Galvan, C.; Sheu, K.M.; Lay, J.; Wong, D.J.L.; Atefi, M.; Shirazi, R.; Wang, X.; Braas, D.; Grasso, C.S.; Palaskas, N.; Ribas, A.; Graeber, T.G. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 2018, 33(5), 890-904.e5. doi: 10.1016/j.ccell.2018.03.017 PMID: 29657129
- Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol., 2019, 15(12), 1137-1147. doi: 10.1038/s41589-019-0408-1 PMID: 31740834
- Golej, D.L.; Askari, B.; Kramer, F.; Barnhart, S.; Vivekanandan-Giri, A.; Pennathur, S.; Bornfeldt, K.E. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. J. Lipid Res., 2011, 52(4), 782-793. doi: 10.1194/jlr.M013292 PMID: 21242590
- Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell, 2021, 81(2), 355-369.e10. doi: 10.1016/j.molcel.2020.11.024 PMID: 33321093
- Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309. doi: 10.1038/s41589-020-0472-6 PMID: 32080622
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53. doi: 10.1021/acscentsci.9b01063 PMID: 31989025
- Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 2021, 593(7860), 586-590. doi: 10.1038/s41586-021-03539-7 PMID: 33981038
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285. doi: 10.1016/j.cell.2017.09.021 PMID: 28985560
- Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197. doi: 10.1002/adma.201904197 PMID: 31595562
- Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460. doi: 10.4143/crt.2016.572 PMID: 28494534
- Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
- Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatins cytotoxicity in cancer cells. Sci. Rep., 2018, 8(1), 968. doi: 10.1038/s41598-018-19213-4 PMID: 29343855
- Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457. doi: 10.1038/nature23007 PMID: 28678785
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296. doi: 10.1038/s41571-020-00462-0 PMID: 33514910
- Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250. doi: 10.1038/nature24297 PMID: 29088702
- Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162. doi: 10.1038/s41422-019-0263-3 PMID: 31949285
- Bai, X.; Ni, J.; Beretov, J.; Wasinger, V.C.; Wang, S.; Zhu, Y.; Graham, P.; Li, Y. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis. Redox Biol., 2021, 43, 101993. doi: 10.1016/j.redox.2021.101993 PMID: 33946018
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
- Ravindran Menon, D.; Hammerlindl, H.; Torrano, J.; Schaider, H.; Fujita, M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics, 2020, 10(14), 6261-6277. doi: 10.7150/thno.42523 PMID: 32483452
- Zhang, M.X.; Wang, L.; Zeng, L.; Tu, Z.W. LCN2 is a potential biomarker for radioresistance and recurrence in nasopharyngeal carcinoma. Front. Oncol., 2021, 10, 605777. doi: 10.3389/fonc.2020.605777 PMID: 33604288
- Demuynck, R.; Efimova, I.; Catanzaro, E.; Krysko, D.V. Ferroptosis: Friend or foe in cancer immunotherapy? OncoImmunology, 2023, 12(1), 2182992. doi: 10.1080/2162402X.2023.2182992 PMID: 36875549
- Du, S.; Zeng, F.; Deng, G. Tumor neutrophils ferroptosis: A targetable immunosuppressive mechanism for cancer immunotherapy. Signal Transduct. Target. Ther., 2023, 8(1), 77. doi: 10.1038/s41392-023-01357-z PMID: 36813764
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancerimmune set point. Nature, 2017, 541(7637), 321-330. doi: 10.1038/nature21349 PMID: 28102259
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61. doi: 10.1126/science.aaa8172 PMID: 25838373
- Wei, S.C.; Levine, J.H.; Cogdill, A.P.; Zhao, Y.; Anang, N.A.A.S.; Andrews, M.C.; Sharma, P.; Wang, J.; Wargo, J.A.; Peer, D.; Allison, J.P. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell, 2017, 170(6), 1120-1133.e17. doi: 10.1016/j.cell.2017.07.024 PMID: 28803728
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184(21), 5309-5337. doi: 10.1016/j.cell.2021.09.020 PMID: 34624224
- Yuen, V.W.H.; Chiu, D.K.C.; Law, C.T.; Cheu, J.W.S.; Chan, C.Y.K.; Wong, B.P.Y.; Goh, C.C.; Zhang, M.S.; Xue, H.D.G.; Tse, A.P.W.; Zhang, Y.; Lau, H.Y.H.; Lee, D.; Au-Yeung, R.K.H.; Wong, C.M.; Wong, C.C.L. Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J. Hepatol., 2023, 78(2), 376-389. doi: 10.1016/j.jhep.2022.10.037 PMID: 36455783
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10, 168. doi: 10.3389/fimmu.2019.00168 PMID: 30800125
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218. doi: 10.1038/s41573-018-0007-y PMID: 30610226
- Zhang, J.; Huang, D.; Saw, P.E.; Song, E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol., 2022, 43(7), 523-545. doi: 10.1016/j.it.2022.04.010 PMID: 35624021
- Daei Sorkhabi, A.; Mohamed Khosroshahi, L.; Sarkesh, A.; Mardi, A.; Aghebati-Maleki, A.; Aghebati-Maleki, L.; Baradaran, B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front. Immunol., 2023, 14, 1113882. doi: 10.3389/fimmu.2023.1113882 PMID: 37020537
- Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560. doi: 10.7150/ijbs.34213 PMID: 31754328
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234. doi: 10.1038/nrd1984 PMID: 16518375
- Yin, W.; Chang, J.; Sun, J.; Zhang, T.; Zhao, Y.; Li, Y.; Dong, H. Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(6), 1171-1190. doi: 10.1039/D2TB02161G PMID: 36650960
- Xie, S.; Sun, W.; Zhang, C.; Dong, B.; Yang, J.; Hou, M.; Xiong, L.; Cai, B.; Liu, X.; Xue, W. Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy. ACS Nano, 2021, 15(4), 7179-7194. doi: 10.1021/acsnano.1c00380 PMID: 33861924
- An, Y.; Zhu, J.; Liu, F.; Deng, J.; Meng, X.; Liu, G.; Wu, H.; Fan, A.; Wang, Z.; Zhao, Y. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Appl. Mater. Interfaces, 2019, 11(33), 29655-29666. doi: 10.1021/acsami.9b10954 PMID: 31359759
- Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; Lin, J. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett., 2017, 17(2), 928-937. doi: 10.1021/acs.nanolett.6b04269 PMID: 28139118
- Yao, X.; Yang, P.; Jin, Z.; Jiang, Q.; Guo, R.; Xie, R.; He, Q.; Yang, W. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials, 2019, 197, 268-283. doi: 10.1016/j.biomaterials.2019.01.026 PMID: 30677556
- Isola, A.L.; Chen, S. Exosomes: The messengers of health and disease. Curr. Neuropharmacol., 2017, 15(1), 157-165. doi: 10.2174/1570159X14666160825160421 PMID: 27568544
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977. doi: 10.1126/science.aau6977 PMID: 32029601
- Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release, 2015, 219, 396-405. doi: 10.1016/j.jconrel.2015.07.030 PMID: 26241750
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics, 2021, 11(7), 3183-3195. doi: 10.7150/thno.52570 PMID: 33537081
- Qiu, X.; Li, Z.; Han, X.; Zhen, L.; Luo, C.; Liu, M.; Yu, K.; Ren, Y. Tumor-derived nanovesicles promote lung distribution of the therapeutic nanovector through repression of Kupffer cell-mediated phagocytosis. Theranostics, 2019, 9(9), 2618-2636. doi: 10.7150/thno.32363 PMID: 31131057
- Du, J.; Wan, Z.; Wang, C.; Lu, F.; Wei, M.; Wang, D.; Hao, Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics, 2021, 11(17), 8185-8196. doi: 10.7150/thno.59121 PMID: 34373736
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med., 2021, 218(6), e20210518. doi: 10.1084/jem.20210518 PMID: 33978684
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23. doi: 10.1038/s41569-022-00735-4 PMID: 35788564
- Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421. doi: 10.1016/j.cell.2022.06.003 PMID: 35803244
- Ma, L.; Hostetler, A.; Morgan, D.M.; Maiorino, L.; Sulkaj, I.; Whittaker, C.A.; Neeser, A.; Pires, I.S.; Yousefpour, P.; Gregory, J.; Qureshi, K.; Dye, J.; Abraham, W.; Suh, H.; Li, N.; Love, J.C.; Irvine, D.J.; Vaccine-boosted, C.A.R. Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity. Cell, 2023, 186(15), 3148-3165.e20. doi: 10.1016/j.cell.2023.06.002 PMID: 37413990
- Feng, Y.; Dai, Y. APOL3-LDHA axis related immunity activation and cancer ferroptosis induction. Int. J. Biol. Sci., 2023, 19(5), 1401-1402. doi: 10.7150/ijbs.83342 PMID: 37056935
- Dai, E.; Han, L.; Liu, J.; Xie, Y.; Kroemer, G.; Klionsky, D.J.; Zeh, H.J.; Kang, R.; Wang, J.; Tang, D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16(11), 2069-2083. doi: 10.1080/15548627.2020.1714209 PMID: 31920150
Supplementary files
