Immunohistochemical Expression of the SERPINA3 Protein in Uterine Fibroids


Cite item

Full Text

Abstract

Background:SERPINA3 (α-1-antichymotrypsin, AACT, ACT) is produced by the liver and released into plasma in an anti-inflammatory response and plays a role as a modulator of extracellular matrix (ECM) by inhibiting serine proteases. Numerous studies proved an increased level of SERPINA3 in many types of cancer, which could be linked to SERPINA3’s anti-apoptotic function.

Aim:In the context of progressive ECM fibrosis during the development of uterine fibroids, which are one of the most common hypertrophic changes within the uterus, it is interesting to describe the level of SERPINA3 protein in this type of lesion and the surrounding tissues.

Methods:We used immunohistochemical staining of the SERPINA3 protein and compared the intensity of the signal between the myoma tissue and the surrounding normal tissue.

Results:We showed a surprising reduction in the amount of the SERPINA3 protein within uterine fibroids compared to surrounding tissues.

Conclusion:This observation sheds new light on the role of this protein in the formation of proliferative changes and suggests that understanding the mechanism of its action may become the basis for the development of new diagnostic and therapeutic tools.

About the authors

Mateusz de Mezer

Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Anna Markowska

Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences

Email: info@benthamscience.net

Janina Markowska

none, Gynecological Center

Email: info@benthamscience.net

Monika Krzyżaniak

Department of Oncological Pathology, Lord’s Transfiguration Clinical Hospital, Partner of Poznan University of Medical Sciences

Email: info@benthamscience.net

Beniamin Grabarek

Collegium Medicum, WSB University

Email: info@benthamscience.net

Filip Pokusa

Faculty of Economics and Pedagogy,, Higher School of Management and Administration in Opole

Email: info@benthamscience.net

Jakub Żurawski

Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences

Email: info@benthamscience.net

References

  1. Stewart, E.A.; Cookson, C.L.; Gandolfo, R.A.; Schulze-Rath, R. Epidemiology of uterine fibroids: A systematic review. BJOG, 2017, 124(10), 1501-1512. doi: 10.1111/1471-0528.14640 PMID: 28296146
  2. Vilos, G.A.; Allaire, C.; Laberge, P.Y.; Leyland, N.; Vilos, A.G.; Murji, A.; Chen, I. The management of uterine leiomyomas. J. Obstet. Gynaecol. Can., 2015, 37(2), 157-178. doi: 10.1016/S1701-2163(15)30338-8 PMID: 25767949
  3. Pavone, D.; Clemenza, S.; Sorbi, F.; Fambrini, M.; Petraglia, F. Epidemiology and risk factors of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, 46, 3-11. doi: 10.1016/j.bpobgyn.2017.09.004 PMID: 29054502
  4. Reis, F.M.; Bloise, E.; Ortiga-Carvalho, T.M. Hormones and pathogenesis of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 34, 13-24. doi: 10.1016/j.bpobgyn.2015.11.015 PMID: 26725037
  5. Moravek, M.B.; Yin, P.; Ono, M.; Coon V, J.S.; Dyson, M.T.; Navarro, A.; Marsh, E.E.; Chakravarti, D.; Kim, J.J.; Wei, J.J.; Bulun, S.E. Ovarian steroids, stem cells and uterine leiomyoma: Therapeutic implications. Hum. Reprod. Update, 2015, 21(1), 1-12. doi: 10.1093/humupd/dmu048 PMID: 25205766
  6. Islam, M.S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update, 2018, 24(1), 59-85. doi: 10.1093/humupd/dmx032 PMID: 29186429
  7. Cardozo, E.R.; Foster, R.; Karmon, A.E.; Lee, A.E.; Gatune, L.W.; Rueda, B.R.; Styer, A.K. MicroRNA 21a-5p overexpression impacts mediators of extracellular matrix formation in uterine leiomyoma. Reprod. Biol. Endocrinol., 2018, 16(1), 46. doi: 10.1186/s12958-018-0364-8 PMID: 29747655
  8. Carneiro, M.M. Stem cells and uterine leiomyomas: What is the evidence? JBRA Assist. Reprod., 2016, 20(1), 33-37. doi: 10.5935/1518-0557.20160008 PMID: 27203304
  9. Cetin, E.; Al-Hendy, A.; Ciebiera, M. Non-hormonal mediators of uterine fibroid growth. Curr. Opin. Obstet. Gynecol., 2020, 32(5), 361-370. doi: 10.1097/GCO.0000000000000650 PMID: 32739973
  10. Galindo, L.J.; Hernández-Beeftink, T.; Salas, A.; Jung, Y.; Reyes, R.; de Oca, F.M.; Hernández, M.; Almeida, T.A. HMGA2 and MED12 alterations frequently co-occur in uterine leiomyomas. Gynecol. Oncol., 2018, 150(3), 562-568. doi: 10.1016/j.ygyno.2018.07.007 PMID: 30017537
  11. Liu, X.; Liu, Y.; Zhao, J.; Liu, Y. Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis. Mol. Med. Rep., 2018, 17(5), 6985-6996. doi: 10.3892/mmr.2018.8756 PMID: 29568968
  12. Moravek, M.; Yin, P.; Ono, M.; Coon, V. J.; Dyson, M.; Navarro, A.; Marsh, E.; Zhao, H.; Maruyama, T.; Chakravarti, D.; Kim, J.; Wei, J-J.; Bulun, S. Uterine leiomyoma stem cells: Linking progesterone to growth. Semin. Reprod. Med., 2015, 33(5), 357-365. doi: 10.1055/s-0035-1558451 PMID: 26251118
  13. Mäkinen, N.; Kämpjärvi, K.; Frizzell, N.; Bützow, R.; Vahteristo, P. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol. Cancer, 2017, 16(1), 101. doi: 10.1186/s12943-017-0672-1 PMID: 28592321
  14. Lewis, T.D.; Malik, M.; Britten, J.; San Pablo, A.M.; Catherino, W.H. A comprehensive review of the pharmacologic management of uterine leiomyoma. BioMed Res. Int., 2018, 2018, 1-11. doi: 10.1155/2018/2414609 PMID: 29780819
  15. Rizzello, A.; Franck, J.; Pellegrino, M.; Nuccio, F.; Simeone, P.; Fiore, G.; Tommaso, S.; Malvasi, A.; Tinelli, A.; Fournier, I.; Salzet, M.; Maffia, M.; Vergara, D. A proteomic analysis of human uterine myoma. Curr. Protein Pept. Sci., 2016, 18(2), 167-174. doi: 10.2174/1389203717666160322150603 PMID: 27001059
  16. Travis, J.; Bowen, J.; Baugh, R. Human α-1-antichymotrypsin: Interaction with chymotrypsin-like proteinases. Biochemistry, 1978, 17(26), 5651-5656. doi: 10.1021/bi00619a011 PMID: 728423
  17. Sanchez-Navarro, A.; González-Soria, I.; Caldiño-Bohn, R.; Bobadilla, N.A. An integrative view of serpins in health and disease: The contribution of SerpinA3. Am. J. Physiol. Cell Physiol., 2020, 320(1), C106-C118. doi: 10.1152/ajpcell.00366.2020
  18. Sun, Y-X.; Wright, H.T.; Janciauskiene, S. Alpha1-antichymotrypsin/Alzheimer’s peptide Abeta(1-42) complex perturbs lipid metabolism and activates transcription factors PPARgamma and NFkappaB in human neuroblastoma (Kelly) cells. J. Neurosci. Res., 2002, 67(4), 511-522. doi: 10.1002/jnr.10144 PMID: 11835318
  19. Duranton, J.; Boudier, C.; Belorgey, D.; Mellet, P.; Bieth, J.G. DNA strongly impairs the inhibition of cathepsin G by alpha(1)-antichymotrypsin and alpha(1)-proteinase inhibitor. J. Biol. Chem., 2000, 275(6), 3787-3792. doi: 10.1074/jbc.275.6.3787 PMID: 10660528
  20. Granger, D.N.; Senchenkova, E. Inflammation and the Microcirculation; Morgan & Claypool Life Sciences: San Rafael, CA, 2010. doi: 10.4199/C00013ED1V01Y201006ISP008
  21. Anada, R.P.; Wong, K.T.; Jayapalan, J.J.; Hashim, O.H.; Ganesan, D. Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis, 2018, 39(18), 2308-2315. doi: 10.1002/elps.201700407 PMID: 29570807
  22. Sobieska, M.; Steiner, I.; Olejnik, J.; Szydłowski, J.; Antyborzec, J.; Grzegorowski, M.; Wiktorowicz, K. Increased concentration of A1-antichymotrypsin as a marker of necrotic processes during chronic tonsillitis. Nowa Pediatr., 1999, 3, 237-240.
  23. Jin, Y.; Wang, W.; Wang, Q.; Zhang, Y.; Zahid, K.R.; Raza, U.; Gong, Y. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int., 2022, 22(1), 156. doi: 10.1186/s12935-022-02572-4 PMID: 35439996
  24. Murphy, C.E.; Kondo, Y.; Walker, A.K.; Rothmond, D.A.; Matsumoto, M.; Shannon Weickert, C. Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav. Immun., 2020, 88, 826-839. doi: 10.1016/j.bbi.2020.05.055 PMID: 32450195
  25. Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759. doi: 10.1124/pr.110.002733 PMID: 21079042
  26. Santamaria, M.; Pardo-Saganta, A.; Alvarez-Asiain, L.; Di Scala, M.; Qian, C.; Prieto, J.; Avila, M.A. Nuclear α1-antichymotrypsin promotes chromatin condensation and inhibits proliferation of human hepatocellular carcinoma cells. Gastroenterology, 2013, 144(4), 818-828.e4. doi: 10.1053/j.gastro.2012.12.029 PMID: 23295442
  27. Naidoo, N.; Cooperman, B.S.; Wang, Z.; Liu, X.; Rubin, H. Identification of lysines within alpha 1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements. J. Biol. Chem., 1995, 270(24), 14548-14555. doi: 10.1074/jbc.270.24.14548 PMID: 7782318
  28. Chasman, D.; Walters, K.B.; Lopes, T.J.S.; Eisfeld, A.J.; Kawaoka, Y.; Roy, S. Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLOS Comput. Biol., 2016, 12(7), e1005013. doi: 10.1371/journal.pcbi.1005013 PMID: 27403523
  29. Abbasi, S.; Hosseinkhan, N.; Shafiei Jandaghi, N.Z.; Sadeghi, K.; Foroushani, A.R.; Hassani, S.A.; Yavarian, J.; Azad, T.M. Impact of human rhinoviruses on gene expression in pediatric patients with severe acute respiratory infection. Virus Res., 2021, 300, 198408. doi: 10.1016/j.virusres.2021.198408 PMID: 33878402
  30. Burgener, A.; Rahman, S.; Ahmad, R.; Lajoie, J.; Ramdahin, S.; Mesa, C.; Brunet, S.; Wachihi, C.; Kimani, J.; Fowke, K.; Carr, S.; Plummer, F.; Ball, T.B. Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J. Proteome Res., 2011, 10(11), 5139-5149. doi: 10.1021/pr200596r PMID: 21973077
  31. Woollard, S.M.; Bhargavan, B.; Yu, F.; Kanmogne, G.D. Differential effects of Tat proteins derived from HIV-1 subtypes B and recombinant CRF02_AG on human brain microvascular endothelial cells: Implications for blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2014, 34(6), 1047-1059. doi: 10.1038/jcbfm.2014.54 PMID: 24667918
  32. Ferrarini, M.G.; Lal, A.; Rebollo, R.; Gruber, A.J.; Guarracino, A.; Gonzalez, I.M.; Floyd, T.; de Oliveira, D.S.; Shanklin, J.; Beausoleil, E.; Pusa, T.; Pickett, B.E.; Aguiar-Pulido, V. Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun. Biol., 2021, 4(1), 590. doi: 10.1038/s42003-021-02095-0 PMID: 34002013
  33. Suvarna, K.; Biswas, D.; Pai, M.G.J.; Acharjee, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury, M.; Ghantasala, S.; Ghosh, S.; Singh, A.; Banerjee, A.; Badaya, A.; Bihani, S.; Loya, G.; Mantri, K.; Burli, A.; Roy, J.; Srivastava, A.; Agrawal, S.; Shrivastav, O.; Shastri, J.; Srivastava, S. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity with drug repurposing potential. Front. Physiol., 2021, 12, 652799. doi: 10.3389/fphys.2021.652799 PMID: 33995121
  34. Zhang, Y.; Tian, J.; Qu, C.; Peng, Y.; Lei, J.; Li, K.; Zong, B.; Sun, L.; Liu, S. Overexpression of SERPINA3 promotes tumor invasion and migration, epithelial-mesenchymal-transition in triple-negative breast cancer cells. Breast Cancer, 2021, 28(4), 859-873. doi: 10.1007/s12282-021-01221-4 PMID: 33569740
  35. Lara-Velazquez, M.; Zarco, N.; Carrano, A.; Phillipps, J.; Norton, E.S.; Schiapparelli, P.; Al-kharboosh, R.; Rincon-Torroella, J.; Jeanneret, S.; Corona, T.; Segovia, J.; Jentoft, M.E.; Chaichana, K.L.; Asmann, Y.W.; Quiñones-Hinojosa, A.; Guerrero-Cazares, H. Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro-oncol., 2021, 23(4), 599-610. doi: 10.1093/neuonc/noaa264 PMID: 33249487
  36. Nimbalkar, V.P.; Kruthika, B.S.; Sravya, P.; Rao, S.; Sugur, H.S.; Verma, B.K.; Chickabasaviah, Y.T.; Arivazhagan, A.; Kondaiah, P.; Santosh, V. Differential gene expression in peritumoral brain zone of glioblastoma: Role of SERPINA3 in promoting invasion, stemness and radioresistance of glioma cells and association with poor patient prognosis and recurrence. J. Neurooncol., 2021, 152(1), 55-65. doi: 10.1007/s11060-020-03685-4 PMID: 33389566
  37. Cao, L.L.; Pei, X.F.; Qiao, X.; Yu, J.; Ye, H.; Xi, C.L.; Wang, P.Y.; Gong, Z.L. SERPINA3 silencing inhibits the migration, invasion, and liver metastasis of colon cancer cells. Dig. Dis. Sci., 2018, 63(9), 2309-2319. doi: 10.1007/s10620-018-5137-x PMID: 29855767
  38. Ko, E.; Kim, J.S.; Bae, J.W.; Kim, J.; Park, S.G.; Jung, G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol., 2019, 24, 101217. doi: 10.1016/j.redox.2019.101217 PMID: 31121493
  39. Koivuluoma, S.; Tervasmäki, A.; Kauppila, S.; Winqvist, R.; Kumpula, T.; Kuismin, O.; Moilanen, J.; Pylkäs, K. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur. J. Cancer, 2021, 143, 46-51. doi: 10.1016/j.ejca.2020.10.033 PMID: 33279852
  40. Zhao, J.; Fan, Y.X.; Yang, Y.; Liu, D.L.; Wu, K.; Wen, F.B.; Zhang, C.Y.; Zhu, D.Y.; Zhao, S. Identification of potential plasma biomarkers for esophageal squamous cell carcinoma by a proteomic method. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1535-1544. PMID: 25973038
  41. Li, Q.; Zeng, H.; Zhao, Y.; Gong, Y.; Ma, X. Proteomic analysis of cerebrospinal fluid from patients with extranodal NK-/T-Cell lymphoma of nasal-type with ethmoidal sinus metastasis. Front. Oncol., 2020, 9, 1489. doi: 10.3389/fonc.2019.01489 PMID: 31998645
  42. Zhang, J.; Wang, W.; Zhu, S.; Chen, Y. Increased SERPINA3 level is associated with ulcerative colitis. Diagnostics, 2021, 11(12), 2371. doi: 10.3390/diagnostics11122371 PMID: 34943607
  43. Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk factors for the diagnosis of colorectal cancer. Cancer Contr., 2022, 29. doi: 10.1177/10732748211056692 PMID: 35000418
  44. Jin, Y.; Wang, J.; Ye, X.; Su, Y.; Yu, G.; Yang, Q.; Liu, W.; Yu, W.; Cai, J.; Chen, X.; Liang, Y.; Chen, Y.; Wong, B.H.C.; Fu, X.; Sun, H. Identification of GlcNAcylated alpha-1-antichymotrypsin as an early biomarker in human non-small-cell lung cancer by quantitative proteomic analysis with two lectins. Br. J. Cancer, 2016, 114(5), 532-544. doi: 10.1038/bjc.2015.348 PMID: 26908325
  45. de Mezer, M.; Rogaliński, J.; Przewoźny, S.; Chojnicki, M.; Niepolski, L.; Sobieska, M.; Przystańska, A. SERPINA3: Stimulator or inhibitor of pathological changes. Biomedicines, 2023, 11(1), 156. doi: 10.3390/biomedicines11010156 PMID: 36672665
  46. Higashiyama, M.; Doi, O.; Yokouchi, H.; Kodama, K.; Nakamori, S.; Tateishi, R. Alpha-1-antichymotrypsin expression in lung adenocarcinoma and its possible association with tumor progression. Biochemistry, 1995, 22, 5055-5061. doi: 10.1002/1097-0142(19951015)76:83.0.CO;2-N
  47. Zhou, J.; Cheng, Y.; Tang, L.; Martinka, M.; Kalia, S. Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget, 2017, 8(12), 18712-18725. doi: 10.18632/oncotarget.9409 PMID: 27213583
  48. Luo, D.; Chen, W.; Tian, Y.; Li, J.; Xu, X.; Chen, C.; Li, F. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), is overexpressed in glioma and associated with poor prognosis in glioma patients. OncoTargets Ther., 2017, 10, 2173-2181. doi: 10.2147/OTT.S133022 PMID: 28458560
  49. Yang, G-D.; Yang, X-M.; Lu, H.; Ren, Y.; Ma, M-Z.; Zhu, L-Y.; Wang, J-H.; Song, W-W.; Zhang, W-M.; Zhang, R.; Zhang, Z.G. SERPINA3 promotes endometrial cancer cells growth by regulating G2/M cell cycle checkpoint and apoptosis. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1348-1358. PMID: 24817931
  50. Tahara, E.; Ito, H.; Taniyama, K.; Yokozaki, H.; Hata, J. Alpha1-antitrypsin, alpha1-antichymotrypsin, and alpha2-macroglobulin in human gastric carcinomas: A retrospective immunohistochemical study. Hum. Pathol., 1984, 15(10), 957-964. doi: 10.1016/S0046-8177(84)80125-2 PMID: 6207098
  51. Meijers, W.C.; Maglione, M.; Bakker, S.J.L.; Oberhuber, R.; Kieneker, L.M.; de Jong, S.; Haubner, B.J.; Nagengast, W.B.; Lyon, A.R.; van der Vegt, B.; van Veldhuisen, D.J.; Westenbrink, B.D.; van der Meer, P.; Silljé, H.H.W.; de Boer, R.A. Heart failure stimulates tumor growth by circulating factors. Circulation, 2018, 138(7), 678-691. doi: 10.1161/CIRCULATIONAHA.117.030816 PMID: 29459363
  52. Zhou, M.L.; Chen, F.S.; Mao, H. Clinical significance and role of up-regulation of SERPINA3 expression in endometrial cancer. World J. Clin. Cases, 2019, 7(15), 1996-2002. doi: 10.12998/wjcc.v7.i15.1996 PMID: 31423431
  53. Markowska, A.; Kurzawa, P.; Bednarek, W.; Gryboś, A.; Mardas, M.; Krzyżaniak, M.; Majewski, J.; Markowska, J.; Gryboś, M.; Żurawski, J. Immunohistochemical expression of Vitamin D receptor in uterine fibroids. Nutrients, 2022, 14(16), 3371. doi: 10.3390/nu14163371 PMID: 36014877
  54. Chalcarz, M.; Żurawski, J. Injection of aquafilling® for breast augmentation causes inflammatory responses independent of visible symptoms. Aesthetic Plast. Surg., 2021, 45(2), 481-490. doi: 10.1007/s00266-020-01949-y PMID: 32939601
  55. Chalcarz, M.; Żurawski, J. The absence of early malignant changes in women subjected to Aquafilling breast augmentation on the basis of E-cadherin and N-cadherin immunohistochemical expression. Cent. Eur. J. Immunol., 2022, 47(4), 350-356. doi: 10.5114/ceji.2022.124070 PMID: 36817402
  56. The Human Protein Atlas Available from: https://www.proteinatlas.org/ (accessed on 1 September 2023).
  57. Kulesza, D.W.; Ramji, K.; Maleszewska, M.; Mieczkowski, J.; Dabrowski, M.; Chouaib, S.; Kaminska, B. Search for novel STAT3-dependent genes reveals SERPINA3 as a new STAT3 target that regulates invasion of human melanoma cells. Lab. Invest., 2019, 99(11), 1607-1621. doi: 10.1038/s41374-019-0288-8 PMID: 31278347
  58. Bogusiewicz, M.; Stryjecka-Zimmer, M.; Postawski, K.; Jakimiuk, A.J.; Rechberger, T. Activity of matrix metalloproteinase-2 and -9 and contents of their tissue inhibitors in uterine leiomyoma and corresponding myometrium. Gynecol. Endocrinol., 2007, 23(9), 541-546. doi: 10.1080/09513590701557416 PMID: 17943549
  59. Malik, M.; Norian, J.; McCarthy-Keith, D.; Britten, J.; Catherino, W. Why leiomyomas are called fibroids: The central role of extracellular matrix in symptomatic women. Semin. Reprod. Med., 2010, 28(3), 169-179. doi: 10.1055/s-0030-1251475 PMID: 20414841
  60. Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol., 2000, 2(10), 737-744. doi: 10.1038/35036374 PMID: 11025665
  61. Lee, S.; Jilani, S.M.; Nikolova, G.V.; Carpizo, D.; Iruela-Arispe, M.L. Processing of VEGF: A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol., 2005, 169(4), 681-691. doi: 10.1083/jcb.200409115 PMID: 15911882
  62. Kurachi, O.; Matsuo, H.; Samoto, T.; Maruo, T. Tumor necrosis factor-α expression in human uterine leiomyoma and its down-regulation by progesterone. J. Clin. Endocrinol. Metab., 2001, 86(5), 2275-2280. doi: 10.1210/jc.86.5.2275 PMID: 11344239
  63. Plewka, A.; Madej, P.; Plewka, D.; Kowalczyk, A.; Miskiewicz, A.; Wittek, P.; Leks, T.; Bilski, R. Immunohistochemical localization of selected pro-inflammatory factors in uterine myomas and myometrium in women of various ages. Folia Histochem. Cytobiol., 2013, 51(1), 73-83. doi: 10.5603/FHC.2013.0011 PMID: 23690221
  64. Wang, Y.; Feng, G.; Wang, J.; Zhou, Y.; Liu, Y.; Shi, Y.; Zhu, Y.; Lin, W.; Xu, Y.; Li, Z. Differential effects of tumor necrosis factor-α on matrix metalloproteinase-2 expression in human myometrial and uterine leiomyoma smooth muscle cells. Hum. Reprod., 2015, 30(1), 61-70. doi: 10.1093/humrep/deu300 PMID: 25398968
  65. Islam, M.S.; Protic, O.; Giannubilo, S.R.; Toti, P.; Tranquilli, A.L.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Uterine leiomyoma: Available medical treatments and new possible therapeutic options. J. Clin. Endocrinol. Metab., 2013, 98(3), 921-934. doi: 10.1210/jc.2012-3237 PMID: 23393173
  66. Islam, M.S.; Catherino, W.H.; Protic, O.; Janjusevic, M.; Gray, P.C.; Giannubilo, S.R.; Ciavattini, A.; Lamanna, P.; Tranquilli, A.L.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Role of activin: A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J. Clin. Endocrinol. Metab., 2014, 99(5), E775-E785. doi: 10.1210/jc.2013-2623 PMID: 24606069
  67. Joseph, D.S.; Malik, M.; Nurudeen, S.; Catherino, W.H. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor β-3. Fertil. Steril., 2010, 93(5), 1500-1508. doi: 10.1016/j.fertnstert.2009.01.081 PMID: 19328471
  68. Zhang, H.; Wang, L.; Cui, J.; Wang, S.; Han, Y.; Shao, H.; Wang, C.; Hu, Y.; Li, X.; Zhou, Q.; Guo, J.; Zhuang, X.; Sheng, S.; Zhang, T.; Zhou, D.; Chen, J.; Wang, F.; Gao, Q.; Jing, Y.; Chen, X.; Su, J. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci. Adv., 2023, 9(14), eabo7868. doi: 10.1126/sciadv.abo7868 PMID: 37018403
  69. He, X.; Zhang, X.; Li, B.; Zhou, S.; Zhao, Y.; Wang, L.; Xu, J.; Yan, H. Capacity degradation mechanism of ternary La–Y–Ni-based hydrogen storage alloys. Chem. Eng. J., 2023, 465, 142840. doi: 10.1016/j.cej.2023.142840
  70. Garmaroudi, G.A.; Karimi, F.; Naeini, L.G.; Kokabian, P.; Givtaj, N. Therapeutic efficacy of oncolytic viruses in fighting cancer: Recent advances and perspective. Oxid. Med. Cell. Longev., 2022, 2022, 1-14. doi: 10.1155/2022/3142306 PMID: 35910836
  71. Zhang, Y.; Wang, C.; Zhang, W.; Li, X. Bioactive peptides for anticancer therapies. Biomater Transl, 2023, 4(1), 5-17. doi: 10.12336/biomatertransl.2023.01.003 PMID: 37206303

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers