Immunohistochemical Expression of the SERPINA3 Protein in Uterine Fibroids
- Authors: de Mezer M.1, Markowska A.2, Markowska J.3, Krzyżaniak M.4, Grabarek B.5, Pokusa F.6, Żurawski J.1
-
Affiliations:
- Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences
- Department of Perinatology and Womens Diseases, Poznan University of Medical Sciences
- none, Gynecological Center
- Department of Oncological Pathology, Lords Transfiguration Clinical Hospital, Partner of Poznan University of Medical Sciences
- Collegium Medicum, WSB University
- Faculty of Economics and Pedagogy,, Higher School of Management and Administration in Opole
- Issue: Vol 25, No 13 (2024)
- Pages: 1758-1765
- Section: Biotechnology
- URL: https://vestnik-pp.samgtu.ru/1389-2010/article/view/644541
- DOI: https://doi.org/10.2174/0113892010264673231111082438
- ID: 644541
Cite item
Full Text
Abstract
Background:SERPINA3 (α-1-antichymotrypsin, AACT, ACT) is produced by the liver and released into plasma in an anti-inflammatory response and plays a role as a modulator of extracellular matrix (ECM) by inhibiting serine proteases. Numerous studies proved an increased level of SERPINA3 in many types of cancer, which could be linked to SERPINA3s anti-apoptotic function.
Aim:In the context of progressive ECM fibrosis during the development of uterine fibroids, which are one of the most common hypertrophic changes within the uterus, it is interesting to describe the level of SERPINA3 protein in this type of lesion and the surrounding tissues.
Methods:We used immunohistochemical staining of the SERPINA3 protein and compared the intensity of the signal between the myoma tissue and the surrounding normal tissue.
Results:We showed a surprising reduction in the amount of the SERPINA3 protein within uterine fibroids compared to surrounding tissues.
Conclusion:This observation sheds new light on the role of this protein in the formation of proliferative changes and suggests that understanding the mechanism of its action may become the basis for the development of new diagnostic and therapeutic tools.
About the authors
Mateusz de Mezer
Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Anna Markowska
Department of Perinatology and Womens Diseases, Poznan University of Medical Sciences
Email: info@benthamscience.net
Janina Markowska
none, Gynecological Center
Email: info@benthamscience.net
Monika Krzyżaniak
Department of Oncological Pathology, Lords Transfiguration Clinical Hospital, Partner of Poznan University of Medical Sciences
Email: info@benthamscience.net
Beniamin Grabarek
Collegium Medicum, WSB University
Email: info@benthamscience.net
Filip Pokusa
Faculty of Economics and Pedagogy,, Higher School of Management and Administration in Opole
Email: info@benthamscience.net
Jakub Żurawski
Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences
Email: info@benthamscience.net
References
- Stewart, E.A.; Cookson, C.L.; Gandolfo, R.A.; Schulze-Rath, R. Epidemiology of uterine fibroids: A systematic review. BJOG, 2017, 124(10), 1501-1512. doi: 10.1111/1471-0528.14640 PMID: 28296146
- Vilos, G.A.; Allaire, C.; Laberge, P.Y.; Leyland, N.; Vilos, A.G.; Murji, A.; Chen, I. The management of uterine leiomyomas. J. Obstet. Gynaecol. Can., 2015, 37(2), 157-178. doi: 10.1016/S1701-2163(15)30338-8 PMID: 25767949
- Pavone, D.; Clemenza, S.; Sorbi, F.; Fambrini, M.; Petraglia, F. Epidemiology and risk factors of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, 46, 3-11. doi: 10.1016/j.bpobgyn.2017.09.004 PMID: 29054502
- Reis, F.M.; Bloise, E.; Ortiga-Carvalho, T.M. Hormones and pathogenesis of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 34, 13-24. doi: 10.1016/j.bpobgyn.2015.11.015 PMID: 26725037
- Moravek, M.B.; Yin, P.; Ono, M.; Coon V, J.S.; Dyson, M.T.; Navarro, A.; Marsh, E.E.; Chakravarti, D.; Kim, J.J.; Wei, J.J.; Bulun, S.E. Ovarian steroids, stem cells and uterine leiomyoma: Therapeutic implications. Hum. Reprod. Update, 2015, 21(1), 1-12. doi: 10.1093/humupd/dmu048 PMID: 25205766
- Islam, M.S.; Ciavattini, A.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update, 2018, 24(1), 59-85. doi: 10.1093/humupd/dmx032 PMID: 29186429
- Cardozo, E.R.; Foster, R.; Karmon, A.E.; Lee, A.E.; Gatune, L.W.; Rueda, B.R.; Styer, A.K. MicroRNA 21a-5p overexpression impacts mediators of extracellular matrix formation in uterine leiomyoma. Reprod. Biol. Endocrinol., 2018, 16(1), 46. doi: 10.1186/s12958-018-0364-8 PMID: 29747655
- Carneiro, M.M. Stem cells and uterine leiomyomas: What is the evidence? JBRA Assist. Reprod., 2016, 20(1), 33-37. doi: 10.5935/1518-0557.20160008 PMID: 27203304
- Cetin, E.; Al-Hendy, A.; Ciebiera, M. Non-hormonal mediators of uterine fibroid growth. Curr. Opin. Obstet. Gynecol., 2020, 32(5), 361-370. doi: 10.1097/GCO.0000000000000650 PMID: 32739973
- Galindo, L.J.; Hernández-Beeftink, T.; Salas, A.; Jung, Y.; Reyes, R.; de Oca, F.M.; Hernández, M.; Almeida, T.A. HMGA2 and MED12 alterations frequently co-occur in uterine leiomyomas. Gynecol. Oncol., 2018, 150(3), 562-568. doi: 10.1016/j.ygyno.2018.07.007 PMID: 30017537
- Liu, X.; Liu, Y.; Zhao, J.; Liu, Y. Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis. Mol. Med. Rep., 2018, 17(5), 6985-6996. doi: 10.3892/mmr.2018.8756 PMID: 29568968
- Moravek, M.; Yin, P.; Ono, M.; Coon, V. J.; Dyson, M.; Navarro, A.; Marsh, E.; Zhao, H.; Maruyama, T.; Chakravarti, D.; Kim, J.; Wei, J-J.; Bulun, S. Uterine leiomyoma stem cells: Linking progesterone to growth. Semin. Reprod. Med., 2015, 33(5), 357-365. doi: 10.1055/s-0035-1558451 PMID: 26251118
- Mäkinen, N.; Kämpjärvi, K.; Frizzell, N.; Bützow, R.; Vahteristo, P. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol. Cancer, 2017, 16(1), 101. doi: 10.1186/s12943-017-0672-1 PMID: 28592321
- Lewis, T.D.; Malik, M.; Britten, J.; San Pablo, A.M.; Catherino, W.H. A comprehensive review of the pharmacologic management of uterine leiomyoma. BioMed Res. Int., 2018, 2018, 1-11. doi: 10.1155/2018/2414609 PMID: 29780819
- Rizzello, A.; Franck, J.; Pellegrino, M.; Nuccio, F.; Simeone, P.; Fiore, G.; Tommaso, S.; Malvasi, A.; Tinelli, A.; Fournier, I.; Salzet, M.; Maffia, M.; Vergara, D. A proteomic analysis of human uterine myoma. Curr. Protein Pept. Sci., 2016, 18(2), 167-174. doi: 10.2174/1389203717666160322150603 PMID: 27001059
- Travis, J.; Bowen, J.; Baugh, R. Human α-1-antichymotrypsin: Interaction with chymotrypsin-like proteinases. Biochemistry, 1978, 17(26), 5651-5656. doi: 10.1021/bi00619a011 PMID: 728423
- Sanchez-Navarro, A.; González-Soria, I.; Caldiño-Bohn, R.; Bobadilla, N.A. An integrative view of serpins in health and disease: The contribution of SerpinA3. Am. J. Physiol. Cell Physiol., 2020, 320(1), C106-C118. doi: 10.1152/ajpcell.00366.2020
- Sun, Y-X.; Wright, H.T.; Janciauskiene, S. Alpha1-antichymotrypsin/Alzheimers peptide Abeta(1-42) complex perturbs lipid metabolism and activates transcription factors PPARgamma and NFkappaB in human neuroblastoma (Kelly) cells. J. Neurosci. Res., 2002, 67(4), 511-522. doi: 10.1002/jnr.10144 PMID: 11835318
- Duranton, J.; Boudier, C.; Belorgey, D.; Mellet, P.; Bieth, J.G. DNA strongly impairs the inhibition of cathepsin G by alpha(1)-antichymotrypsin and alpha(1)-proteinase inhibitor. J. Biol. Chem., 2000, 275(6), 3787-3792. doi: 10.1074/jbc.275.6.3787 PMID: 10660528
- Granger, D.N.; Senchenkova, E. Inflammation and the Microcirculation; Morgan & Claypool Life Sciences: San Rafael, CA, 2010. doi: 10.4199/C00013ED1V01Y201006ISP008
- Anada, R.P.; Wong, K.T.; Jayapalan, J.J.; Hashim, O.H.; Ganesan, D. Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis, 2018, 39(18), 2308-2315. doi: 10.1002/elps.201700407 PMID: 29570807
- Sobieska, M.; Steiner, I.; Olejnik, J.; Szydłowski, J.; Antyborzec, J.; Grzegorowski, M.; Wiktorowicz, K. Increased concentration of A1-antichymotrypsin as a marker of necrotic processes during chronic tonsillitis. Nowa Pediatr., 1999, 3, 237-240.
- Jin, Y.; Wang, W.; Wang, Q.; Zhang, Y.; Zahid, K.R.; Raza, U.; Gong, Y. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int., 2022, 22(1), 156. doi: 10.1186/s12935-022-02572-4 PMID: 35439996
- Murphy, C.E.; Kondo, Y.; Walker, A.K.; Rothmond, D.A.; Matsumoto, M.; Shannon Weickert, C. Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav. Immun., 2020, 88, 826-839. doi: 10.1016/j.bbi.2020.05.055 PMID: 32450195
- Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759. doi: 10.1124/pr.110.002733 PMID: 21079042
- Santamaria, M.; Pardo-Saganta, A.; Alvarez-Asiain, L.; Di Scala, M.; Qian, C.; Prieto, J.; Avila, M.A. Nuclear α1-antichymotrypsin promotes chromatin condensation and inhibits proliferation of human hepatocellular carcinoma cells. Gastroenterology, 2013, 144(4), 818-828.e4. doi: 10.1053/j.gastro.2012.12.029 PMID: 23295442
- Naidoo, N.; Cooperman, B.S.; Wang, Z.; Liu, X.; Rubin, H. Identification of lysines within alpha 1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements. J. Biol. Chem., 1995, 270(24), 14548-14555. doi: 10.1074/jbc.270.24.14548 PMID: 7782318
- Chasman, D.; Walters, K.B.; Lopes, T.J.S.; Eisfeld, A.J.; Kawaoka, Y.; Roy, S. Integrating transcriptomic and proteomic data using predictive regulatory network models of host response to pathogens. PLOS Comput. Biol., 2016, 12(7), e1005013. doi: 10.1371/journal.pcbi.1005013 PMID: 27403523
- Abbasi, S.; Hosseinkhan, N.; Shafiei Jandaghi, N.Z.; Sadeghi, K.; Foroushani, A.R.; Hassani, S.A.; Yavarian, J.; Azad, T.M. Impact of human rhinoviruses on gene expression in pediatric patients with severe acute respiratory infection. Virus Res., 2021, 300, 198408. doi: 10.1016/j.virusres.2021.198408 PMID: 33878402
- Burgener, A.; Rahman, S.; Ahmad, R.; Lajoie, J.; Ramdahin, S.; Mesa, C.; Brunet, S.; Wachihi, C.; Kimani, J.; Fowke, K.; Carr, S.; Plummer, F.; Ball, T.B. Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J. Proteome Res., 2011, 10(11), 5139-5149. doi: 10.1021/pr200596r PMID: 21973077
- Woollard, S.M.; Bhargavan, B.; Yu, F.; Kanmogne, G.D. Differential effects of Tat proteins derived from HIV-1 subtypes B and recombinant CRF02_AG on human brain microvascular endothelial cells: Implications for blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2014, 34(6), 1047-1059. doi: 10.1038/jcbfm.2014.54 PMID: 24667918
- Ferrarini, M.G.; Lal, A.; Rebollo, R.; Gruber, A.J.; Guarracino, A.; Gonzalez, I.M.; Floyd, T.; de Oliveira, D.S.; Shanklin, J.; Beausoleil, E.; Pusa, T.; Pickett, B.E.; Aguiar-Pulido, V. Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun. Biol., 2021, 4(1), 590. doi: 10.1038/s42003-021-02095-0 PMID: 34002013
- Suvarna, K.; Biswas, D.; Pai, M.G.J.; Acharjee, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury, M.; Ghantasala, S.; Ghosh, S.; Singh, A.; Banerjee, A.; Badaya, A.; Bihani, S.; Loya, G.; Mantri, K.; Burli, A.; Roy, J.; Srivastava, A.; Agrawal, S.; Shrivastav, O.; Shastri, J.; Srivastava, S. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity with drug repurposing potential. Front. Physiol., 2021, 12, 652799. doi: 10.3389/fphys.2021.652799 PMID: 33995121
- Zhang, Y.; Tian, J.; Qu, C.; Peng, Y.; Lei, J.; Li, K.; Zong, B.; Sun, L.; Liu, S. Overexpression of SERPINA3 promotes tumor invasion and migration, epithelial-mesenchymal-transition in triple-negative breast cancer cells. Breast Cancer, 2021, 28(4), 859-873. doi: 10.1007/s12282-021-01221-4 PMID: 33569740
- Lara-Velazquez, M.; Zarco, N.; Carrano, A.; Phillipps, J.; Norton, E.S.; Schiapparelli, P.; Al-kharboosh, R.; Rincon-Torroella, J.; Jeanneret, S.; Corona, T.; Segovia, J.; Jentoft, M.E.; Chaichana, K.L.; Asmann, Y.W.; Quiñones-Hinojosa, A.; Guerrero-Cazares, H. Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro-oncol., 2021, 23(4), 599-610. doi: 10.1093/neuonc/noaa264 PMID: 33249487
- Nimbalkar, V.P.; Kruthika, B.S.; Sravya, P.; Rao, S.; Sugur, H.S.; Verma, B.K.; Chickabasaviah, Y.T.; Arivazhagan, A.; Kondaiah, P.; Santosh, V. Differential gene expression in peritumoral brain zone of glioblastoma: Role of SERPINA3 in promoting invasion, stemness and radioresistance of glioma cells and association with poor patient prognosis and recurrence. J. Neurooncol., 2021, 152(1), 55-65. doi: 10.1007/s11060-020-03685-4 PMID: 33389566
- Cao, L.L.; Pei, X.F.; Qiao, X.; Yu, J.; Ye, H.; Xi, C.L.; Wang, P.Y.; Gong, Z.L. SERPINA3 silencing inhibits the migration, invasion, and liver metastasis of colon cancer cells. Dig. Dis. Sci., 2018, 63(9), 2309-2319. doi: 10.1007/s10620-018-5137-x PMID: 29855767
- Ko, E.; Kim, J.S.; Bae, J.W.; Kim, J.; Park, S.G.; Jung, G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol., 2019, 24, 101217. doi: 10.1016/j.redox.2019.101217 PMID: 31121493
- Koivuluoma, S.; Tervasmäki, A.; Kauppila, S.; Winqvist, R.; Kumpula, T.; Kuismin, O.; Moilanen, J.; Pylkäs, K. Exome sequencing identifies a recurrent variant in SERPINA3 associating with hereditary susceptibility to breast cancer. Eur. J. Cancer, 2021, 143, 46-51. doi: 10.1016/j.ejca.2020.10.033 PMID: 33279852
- Zhao, J.; Fan, Y.X.; Yang, Y.; Liu, D.L.; Wu, K.; Wen, F.B.; Zhang, C.Y.; Zhu, D.Y.; Zhao, S. Identification of potential plasma biomarkers for esophageal squamous cell carcinoma by a proteomic method. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1535-1544. PMID: 25973038
- Li, Q.; Zeng, H.; Zhao, Y.; Gong, Y.; Ma, X. Proteomic analysis of cerebrospinal fluid from patients with extranodal NK-/T-Cell lymphoma of nasal-type with ethmoidal sinus metastasis. Front. Oncol., 2020, 9, 1489. doi: 10.3389/fonc.2019.01489 PMID: 31998645
- Zhang, J.; Wang, W.; Zhu, S.; Chen, Y. Increased SERPINA3 level is associated with ulcerative colitis. Diagnostics, 2021, 11(12), 2371. doi: 10.3390/diagnostics11122371 PMID: 34943607
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk factors for the diagnosis of colorectal cancer. Cancer Contr., 2022, 29. doi: 10.1177/10732748211056692 PMID: 35000418
- Jin, Y.; Wang, J.; Ye, X.; Su, Y.; Yu, G.; Yang, Q.; Liu, W.; Yu, W.; Cai, J.; Chen, X.; Liang, Y.; Chen, Y.; Wong, B.H.C.; Fu, X.; Sun, H. Identification of GlcNAcylated alpha-1-antichymotrypsin as an early biomarker in human non-small-cell lung cancer by quantitative proteomic analysis with two lectins. Br. J. Cancer, 2016, 114(5), 532-544. doi: 10.1038/bjc.2015.348 PMID: 26908325
- de Mezer, M.; Rogaliński, J.; Przewoźny, S.; Chojnicki, M.; Niepolski, L.; Sobieska, M.; Przystańska, A. SERPINA3: Stimulator or inhibitor of pathological changes. Biomedicines, 2023, 11(1), 156. doi: 10.3390/biomedicines11010156 PMID: 36672665
- Higashiyama, M.; Doi, O.; Yokouchi, H.; Kodama, K.; Nakamori, S.; Tateishi, R. Alpha-1-antichymotrypsin expression in lung adenocarcinoma and its possible association with tumor progression. Biochemistry, 1995, 22, 5055-5061. doi: 10.1002/1097-0142(19951015)76:83.0.CO;2-N
- Zhou, J.; Cheng, Y.; Tang, L.; Martinka, M.; Kalia, S. Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget, 2017, 8(12), 18712-18725. doi: 10.18632/oncotarget.9409 PMID: 27213583
- Luo, D.; Chen, W.; Tian, Y.; Li, J.; Xu, X.; Chen, C.; Li, F. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), is overexpressed in glioma and associated with poor prognosis in glioma patients. OncoTargets Ther., 2017, 10, 2173-2181. doi: 10.2147/OTT.S133022 PMID: 28458560
- Yang, G-D.; Yang, X-M.; Lu, H.; Ren, Y.; Ma, M-Z.; Zhu, L-Y.; Wang, J-H.; Song, W-W.; Zhang, W-M.; Zhang, R.; Zhang, Z.G. SERPINA3 promotes endometrial cancer cells growth by regulating G2/M cell cycle checkpoint and apoptosis. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1348-1358. PMID: 24817931
- Tahara, E.; Ito, H.; Taniyama, K.; Yokozaki, H.; Hata, J. Alpha1-antitrypsin, alpha1-antichymotrypsin, and alpha2-macroglobulin in human gastric carcinomas: A retrospective immunohistochemical study. Hum. Pathol., 1984, 15(10), 957-964. doi: 10.1016/S0046-8177(84)80125-2 PMID: 6207098
- Meijers, W.C.; Maglione, M.; Bakker, S.J.L.; Oberhuber, R.; Kieneker, L.M.; de Jong, S.; Haubner, B.J.; Nagengast, W.B.; Lyon, A.R.; van der Vegt, B.; van Veldhuisen, D.J.; Westenbrink, B.D.; van der Meer, P.; Silljé, H.H.W.; de Boer, R.A. Heart failure stimulates tumor growth by circulating factors. Circulation, 2018, 138(7), 678-691. doi: 10.1161/CIRCULATIONAHA.117.030816 PMID: 29459363
- Zhou, M.L.; Chen, F.S.; Mao, H. Clinical significance and role of up-regulation of SERPINA3 expression in endometrial cancer. World J. Clin. Cases, 2019, 7(15), 1996-2002. doi: 10.12998/wjcc.v7.i15.1996 PMID: 31423431
- Markowska, A.; Kurzawa, P.; Bednarek, W.; Gryboś, A.; Mardas, M.; Krzyżaniak, M.; Majewski, J.; Markowska, J.; Gryboś, M.; Żurawski, J. Immunohistochemical expression of Vitamin D receptor in uterine fibroids. Nutrients, 2022, 14(16), 3371. doi: 10.3390/nu14163371 PMID: 36014877
- Chalcarz, M.; Żurawski, J. Injection of aquafilling® for breast augmentation causes inflammatory responses independent of visible symptoms. Aesthetic Plast. Surg., 2021, 45(2), 481-490. doi: 10.1007/s00266-020-01949-y PMID: 32939601
- Chalcarz, M.; Żurawski, J. The absence of early malignant changes in women subjected to Aquafilling breast augmentation on the basis of E-cadherin and N-cadherin immunohistochemical expression. Cent. Eur. J. Immunol., 2022, 47(4), 350-356. doi: 10.5114/ceji.2022.124070 PMID: 36817402
- The Human Protein Atlas Available from: https://www.proteinatlas.org/ (accessed on 1 September 2023).
- Kulesza, D.W.; Ramji, K.; Maleszewska, M.; Mieczkowski, J.; Dabrowski, M.; Chouaib, S.; Kaminska, B. Search for novel STAT3-dependent genes reveals SERPINA3 as a new STAT3 target that regulates invasion of human melanoma cells. Lab. Invest., 2019, 99(11), 1607-1621. doi: 10.1038/s41374-019-0288-8 PMID: 31278347
- Bogusiewicz, M.; Stryjecka-Zimmer, M.; Postawski, K.; Jakimiuk, A.J.; Rechberger, T. Activity of matrix metalloproteinase-2 and -9 and contents of their tissue inhibitors in uterine leiomyoma and corresponding myometrium. Gynecol. Endocrinol., 2007, 23(9), 541-546. doi: 10.1080/09513590701557416 PMID: 17943549
- Malik, M.; Norian, J.; McCarthy-Keith, D.; Britten, J.; Catherino, W. Why leiomyomas are called fibroids: The central role of extracellular matrix in symptomatic women. Semin. Reprod. Med., 2010, 28(3), 169-179. doi: 10.1055/s-0030-1251475 PMID: 20414841
- Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol., 2000, 2(10), 737-744. doi: 10.1038/35036374 PMID: 11025665
- Lee, S.; Jilani, S.M.; Nikolova, G.V.; Carpizo, D.; Iruela-Arispe, M.L. Processing of VEGF: A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol., 2005, 169(4), 681-691. doi: 10.1083/jcb.200409115 PMID: 15911882
- Kurachi, O.; Matsuo, H.; Samoto, T.; Maruo, T. Tumor necrosis factor-α expression in human uterine leiomyoma and its down-regulation by progesterone. J. Clin. Endocrinol. Metab., 2001, 86(5), 2275-2280. doi: 10.1210/jc.86.5.2275 PMID: 11344239
- Plewka, A.; Madej, P.; Plewka, D.; Kowalczyk, A.; Miskiewicz, A.; Wittek, P.; Leks, T.; Bilski, R. Immunohistochemical localization of selected pro-inflammatory factors in uterine myomas and myometrium in women of various ages. Folia Histochem. Cytobiol., 2013, 51(1), 73-83. doi: 10.5603/FHC.2013.0011 PMID: 23690221
- Wang, Y.; Feng, G.; Wang, J.; Zhou, Y.; Liu, Y.; Shi, Y.; Zhu, Y.; Lin, W.; Xu, Y.; Li, Z. Differential effects of tumor necrosis factor-α on matrix metalloproteinase-2 expression in human myometrial and uterine leiomyoma smooth muscle cells. Hum. Reprod., 2015, 30(1), 61-70. doi: 10.1093/humrep/deu300 PMID: 25398968
- Islam, M.S.; Protic, O.; Giannubilo, S.R.; Toti, P.; Tranquilli, A.L.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Uterine leiomyoma: Available medical treatments and new possible therapeutic options. J. Clin. Endocrinol. Metab., 2013, 98(3), 921-934. doi: 10.1210/jc.2012-3237 PMID: 23393173
- Islam, M.S.; Catherino, W.H.; Protic, O.; Janjusevic, M.; Gray, P.C.; Giannubilo, S.R.; Ciavattini, A.; Lamanna, P.; Tranquilli, A.L.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Role of activin: A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J. Clin. Endocrinol. Metab., 2014, 99(5), E775-E785. doi: 10.1210/jc.2013-2623 PMID: 24606069
- Joseph, D.S.; Malik, M.; Nurudeen, S.; Catherino, W.H. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor β-3. Fertil. Steril., 2010, 93(5), 1500-1508. doi: 10.1016/j.fertnstert.2009.01.081 PMID: 19328471
- Zhang, H.; Wang, L.; Cui, J.; Wang, S.; Han, Y.; Shao, H.; Wang, C.; Hu, Y.; Li, X.; Zhou, Q.; Guo, J.; Zhuang, X.; Sheng, S.; Zhang, T.; Zhou, D.; Chen, J.; Wang, F.; Gao, Q.; Jing, Y.; Chen, X.; Su, J. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci. Adv., 2023, 9(14), eabo7868. doi: 10.1126/sciadv.abo7868 PMID: 37018403
- He, X.; Zhang, X.; Li, B.; Zhou, S.; Zhao, Y.; Wang, L.; Xu, J.; Yan, H. Capacity degradation mechanism of ternary LaYNi-based hydrogen storage alloys. Chem. Eng. J., 2023, 465, 142840. doi: 10.1016/j.cej.2023.142840
- Garmaroudi, G.A.; Karimi, F.; Naeini, L.G.; Kokabian, P.; Givtaj, N. Therapeutic efficacy of oncolytic viruses in fighting cancer: Recent advances and perspective. Oxid. Med. Cell. Longev., 2022, 2022, 1-14. doi: 10.1155/2022/3142306 PMID: 35910836
- Zhang, Y.; Wang, C.; Zhang, W.; Li, X. Bioactive peptides for anticancer therapies. Biomater Transl, 2023, 4(1), 5-17. doi: 10.12336/biomatertransl.2023.01.003 PMID: 37206303
Supplementary files
