Effect of Grain Size and Texture of Polycrystalline Tungsten on Ion-Beam Sputtering
- Authors: Khisamov R.K.1, Andrianova N.N.2,3, Borisov A.M.1,2,3, Ovchinnikov M.A.2, Mulyukov R.R.1
-
Affiliations:
- Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Moscow Aviation Institute
- Issue: No 2 (2025)
- Pages: 79-90
- Section: Articles
- URL: https://vestnik-pp.samgtu.ru/1028-0960/article/view/686833
- DOI: https://doi.org/10.31857/S1028096025020118
- EDN: https://elibrary.ru/EHTNSY
- ID: 686833
Cite item
Abstract
The effect of grain size and texture of polycrystalline tungsten on the sputtering yield and surface morphology under high-dose irradiation with 30 keV Ar+ ions has been studied. Samples with an average grain size from 300 nm to 7 μm, without texture and with a [001] texture have been used in the experiment. It is shown that the ion-induced surface morphology strongly depends on the grain size and irradiation fluence. The grain size has little (less than 10%) effect on the sputtering yield, while the texture can reduce the sputtering yield by a factor of two. An experiment with varying the angle has shown that the channeling effect is the reason for the two-fold decrease in the sputtering yield for textured samples. The influence of the surface relief on the sputtering yield has been analyzed. An expression taking into account atomic redeposition and ion reflection is proposed to predict the sputtering yield of a surface with ion-induced relief.
Full Text

About the authors
R. Kh. Khisamov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Author for correspondence.
Email: r.khisamov@mail.ru
Russian Federation, Ufa
N. N. Andrianova
Lomonosov Moscow State University; Moscow Aviation Institute
Email: r.khisamov@mail.ru
Russian Federation, Moscow; Moscow
A. M. Borisov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences; Lomonosov Moscow State University; Moscow Aviation Institute
Email: r.khisamov@mail.ru
Russian Federation, Ufa; Moscow; Moscow
M. A. Ovchinnikov
Lomonosov Moscow State University
Email: r.khisamov@mail.ru
Russian Federation, Moscow
R. R. Mulyukov
Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
Email: r.khisamov@mail.ru
Russian Federation, Ufa
References
- Guseva M.I., Martynenko Yu.V. // Sov. Phys. Usp. 1981. V. 24. P. 996. https://doi.org/10.1070/PU1981v024n12ABEH004758
- Martynenko Yu.V., Nagel M.Yu. // Plasma Phys. Rep. 2012. V. 38. P. 996. https://doi.org/10.1134/S1063780X12110074
- Kajita S., Kawaguchi S., Ohno N., Yoshida N. // Sci. Rep. 2018. V. 8. Р. 56. https://doi.org/10.1038/s41598-017-18476-7
- Harutyunyan Z.R., Ogorodnikova O.V., Aksenova A.S., Gasparyan Yu.M., Efimov V.S., Kharkov M.M., Kaziev A.V., Volkov N.V. // J. Surf. Invest: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P 1248. https://doi.org/10.1134/S1027451020060245
- Budaev V.P., Fedorovich S.D., Dedov A.V., Karpov A.V., Martynenko Yu.V., Kavyrshin D.I., Gubkin M.K., Lukashevsky M.V., Lazukin A.V., Zakharenkov A.V., Sliva A.P., Marchenkov A.Yu., Budaeva M.V., Tran Q.V., Rogozin K.A., Konkov A.A., Vasilyev G.B., Burmistrov D.A., Belousov S.V. // Plasma Discharge. Fusion Sci. Technol. 2023. V. 79. Iss. 4. P. 404. https://doi.org/10.1080/15361055.2022.2118471
- Efe M., El-Atwani O., Guo Y, Klenosky D.R. // Scr. Mater. 2014. V. 70. P. 31. https://doi.org/10.1016/j.scriptamat.2013.08.013
- El-Atwani O., Hattar K., Hinks J.A., Greaves G., Harilal S.S., Hassanein A. // J. Nucl. Mater. 2015. V. 458. P. 216. http://doi.org/10.1016/j.jnucmat.2014.12.095
- Chen Z., Niu L-L., Wang Z., Tian L., Kecskes L, Zhu K., Wei Q. // Acta Mater. 2018. V. 147. P. 100. https://doi.org/10.1016/j.actamat.2018.01.015
- Wu Y-C., Hou Q-Q., Luo L-M., Zan X., Zhu X-Y., Li P., Xu Q., Cheng J-G., Luo G-N., Chen J-L. // J. Alloys Compd. 2019. V. 779. P. 926. https://doi.org/10.1016/j.jallcom.2018.11.279
- El-Atwani O., Cunningham W.S., Perez D., Martinez E., Trelewicz J.R., Li M., Maloy S.A. // Scr. Mater. 2020. V. 180. P. 6. https://doi.org/10.1016/j.scriptamat.2020.01.013
- Qian W., Wei R., Zhang M., Chen P., Wang L., Liu X., Chen J., Ni W., Zheng P. // Mater. Lett. 2022. V. 308. P. 130921. https://doi.org/10.1016/j.matlet.2021.130921
- Wurmshuber M., Doppermann S., Wurster S., Jakob S., Balooch M., Alfreider M., Schmuck K., Bodlos R., Romaner L., Hosemann P., Clemens H., Maier-Kiener V., Kiener D. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. P. 106125. https://doi.org/10.1016/j.ijrmhm.2023.106125
- Michaluk C.A. // J. Electron. Mater. 2002. V. 31. P. 2. https://doi.org/10.1007/s11664-002-0165-9
- Voitsenya V.S., Balden M., Bardamid A.F., Bondarenko V.N., Davis J.W., Konovalov V.G., Ryzhkov I.V., Skoryk O.O., Solodovchenko S.I., Zhang-jian Z. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 302. P. 32. https://doi.org/10.1016/j.nimb.2013.03.005
- Yang W., Zhao G., Wang Y., Wang S., Zhan S., Wang D., Bao M., Tang B., Yao L., Wang X. // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 26181. https://doi.org/10.1007/s10854-021-06645-4
- Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Khisamov R.Kh., Mulyukov R.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V. 18. P. 305. https://doi.org/10.1134/S1027451024020046
- Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Khisamov R.Kh, Mulyukov R.R. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. P. 478. https://doi.org/10.1134/S1062873823706141
- Mulyukov R.R. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 1061. https://doi.org/10.1116/1.2174024
- Zhang Y., Ganeev A.V., Wang J.T., Liu J.Q., Alexandrov I.V. // Mater. Sci. Eng. A. 2009. V. 503. P. 37. https://doi.org/10.1016/j.msea.2008.07.074
- Németh A.A.N., Reiser J., Armstrong D.E.J., Rieth M. // Int. J. Refract. Met. Hard Mater. 2015. V. 50. P. 9. https://doi.org/10.1016/j.ijrmhm.2014.11.005
- Bonnekoh C., Lied P., Pantleon W., Karcher T., Leiste H., Hoffmann A., Reiser J., Rieth M. // Int. J. Refract. Met. Hard Mater. 2020. V. 93. P. 105347. https://doi.org/10.1016/j.ijrmhm.2020.105347
- Oh Y., Ko W.-S., Kwak N., Jang J., Ohmura T., Han H.N. // J. Mater. Sci. Technol. 2022. V. 105. P. 242. https://doi.org/10.1016/j.jmst.2021.07.024
- Khisamov R.Kh., Andrianova A.A., Borisov A.M., Ovchinnikov M.A., Timiryaev R.R., Musabirov I.I., Mulyukov R.R. // Phys. At. Nucl. 2023. V. 86. № 10. P. 2198. https://doi.org/10.1134/S1063778823100228
- Markushev M.V., Avtokratova E.V., Krymskiy S.V., Tereshkin V.V., Sitdikov O.Sh. // Lett. Mater. 2022. V. 12. Iss. 4s. P. 463. https://doi.org/10.22226/2410-3535-2022-4-463-468
- Yusupova N.R., Krylova K.A., Mulyukov R.R. // Lett. Mater. 2023. V. 13. Iss. 3. P. 255. https://doi.org/10.22226/2410-3535-2023-3-255-259
- Mulyukov R.R., Khisamov R.Kh., Borisov A.M., Baimiev A.Kh., Ovchinnikov M.A., Timiryaev R.R., Vladimirova A.A. // Lett. Mater. 2023. V. 13. Iss. 4. P. 373. https://doi.org/10.22226/2410-3535-2023-4-373-376
- Xue K., Guo Y., Zhou Y., Xu B., Li P. // Int. J. Refr. Met. Hard Mater. 2021. V. 94. P. 105377. https://doi.org/10.1016/j.ijrmhm.2020.105377
- Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
- Ziegler J.F., Biersack J.P. SRIM, 2013. http://www.srim.org
- Sun M., Ding C., Xu J., Shan D., Guo B., Langdon T.G. // Crystals. 2023. V. 13. P. 887. https://doi.org/10.3390/cryst13060887
- Bradley R.M., Harper J.M.E. // J. Vac. Sci. Technol. A. 1988. V. 6. P. 2390. https://doi.org/10.1116/1.575561
- Chan W.L., Chason E. // J. Appl. Phys. 2007. V. 101. P. 121301. https://doi.org/10.1063/1.2749198
- Littmark U., Hofer W.O. // J. Mater. Sci. 1978. V. 13. P. 2577. https://doi.org/10.1007/BF00552687
- Kustner M., Eckstein W., Dose V., Roth J. // Nucl. Instrum. Methods Phys. Res. B. 1998. V. 145. P. 320. https://doi.org/10.1016/S0168-583X(98)00399-1
- Makeev M.A., Barabasi A.-L. // Nucl. Instrum. Methods Physics. Res. B. 2004. V. 222. P. 316. https://doi.org/10.1016/j.nimb.2004.02.027.
- Stadlmayr R., Szabo P.S., Berger B.M., Cupak C., Chiba R., Blöch D., Mayer D., Stechauner B., Sauer M., Foelske-Schmitz A., Oberkofler M., Schwarz-Selinger T., Mutzke A., Aumayr F. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 430. P. 42. https://doi.org/10.1016/j.nimb.2018.06.004
- Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 1346. https://doi.org/10.1134/S1027451020060440
- Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. P. S66. https://doi.org/10.31857/S1028096022030062
- Borisov A.M., Mashkova E.S., Ovchinnikov M.A., Khisamov R.K., Mulyukov R.R. // Tech. Phys. Lett. 2022. V. 48. Iss. 6. P. 55. https://doi.org/10.21883/TPL.2022.06.53792.19146
- Bradley R.M., Hobler G. // J. Appl. Phys. 2023. V. 133. P. 065303. https://doi.org/10.1063/5.0137324
- Kwon T.H., Park S., Ha J.M., Youn Y-S. // Nucl. Eng. Technol. 2021. V. 53. Iss. 6. P. 1939. https://doi.org/10.1016/j.net.2020.12.024
- Shermukhamedov S., Probst M. // Phys. Plasmas. 2023. V. 30. P. 123901. https://doi.org/10.1063/5.0167840
- Cupak C., Szabo P.S., Biber H., Stadlmayr R., Grave C., Fellinger M., Brötzner J., Wilhelm R.A., Möller W., Mutzke A., Moro M.V., Aumayr F. // Appl. Surf. Sci. 2021. V. 570. P. 151204. https://doi.org/10.1016/j.apsusc.2021.151204
- Szabo P.S., Cupak C., Biber H., Jaggi N., Galli A., Wurz P., Aumayr F. // Surf. Interfaces. 2022. V. 30. P. 101924. https://doi.org/10.1016/j.surfin.2022.101924
- Diddens C., Linz S.J. // Eur. Phys. J. B. 2015. V. 88. P. 190. https://doi.org/10.1140/epjb/e2015-60468-7
- Behrisch R., Eckstein W. Sputtering by Particle Bombardment. Heidelberg–Berlin: Springer–Verlag, 2007. 509 p. doi: 10.1007/978-3-540-44502-9
- Matsunami N., Yamamura Y., Itikawa Y., Itoh N., Kazumata Y., Miyagawa S., Morita K., Shimizu R., Tawara H. // At. Data Nucl. Data Tables. 1984. V. 31. Iss. 1. P. 1. https://doi.org/10.1016/0092-640X(84)90016-0
- Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. Iss. 1. P. 23. https://doi.org/10.1134/S1063780X23601682
- Mahne N., Čekada M., Panjan M. // Coatings. 2022. V. 12. P. 1541. https://doi.org/10.3390/coatings12101541
- Carter G. // J. Phys. D. 2001. V. 34. P. R1. https://doi.org/10.1088/0022-3727/34/3/201
- Behrisch R. Sputtering by Particle Bombardment I. Berlin–Heidelberg–New York: Springer-Verlag, 1981. 281 p.
- Vantomme A. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 371. P. 12. https://doi.org/10.1016/j.nimb.2015.11.035
- Nagasaki T., Hirai H., Yoshino M., Yamada T. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 418. P. 34. https://doi.org/10.1016/j.nimb.2017.12.023
- Eckstein W., Mashkova E.S., Molchanov V.A., Sidorov A.V., Zhukova Yu.N. // Appl. Phys. A. 1993. V. 57. P. 271. https://doi.org/10.1007/BF00332602
Supplementary files
