Mechanochemical synthesis of Ni/HfC composite structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The structural-phase evolution of the mechanochemical formation of Ni/HfC mechanocomposites containing 50 and 70 wt.% nickel was studied using X-ray diffraction analysis, scanning electron microscopy, and energy dispersive spectroscopy. It has been shown by X-ray diffraction analysis, that during mechanochemical synthesis in a ternary mixture of elemental powders Ni, Hf and C at a stoichiometric ratio of Hf and C, the formation of hafnium carbide occurred already after 40 s. For both compositions, the crystallite sizes of the nickel rapidly decrease upon mechanical activation for up to 4 min compared to the initial. Intensive formation of hafnium carbide is recorded during mechanical activation with duration of 4–8 minutes. With mechanical activation for 12 and 20 min, the processes of secondary structure formation lead to homogenization of the product and depletion of hafnium carbide in carbon to the composition HfС0.5.

Full Text

Restricted Access

About the authors

T. F. Grigoreva

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk

D. V. Dudina

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

T. M. Vidyuk

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

S. A. Kovaleva

Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus

Email: grig@solid.nsc.ru
Belarus, Minsk

A. V. Ukhina

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk

E. T. Devyatkina

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk

S. V. Vosmerikov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk

N. Z. Lyakhov

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: grig@solid.nsc.ru
Russian Federation, Novosibirsk

References

  1. Чернов, И.И. Проблема гелия и водорода в реакторных конструкционных материалах / И.И. Чернов // Атомный эксперт. Atomicexpert.com, P.4220299. https://atomicexpert.com/page4232963.html. − (Chernov, I.I. Problema geliia i vodoroda v reaktornykh konstruktsionnykh materialakh / I.I. Chernov // Atomnyi ekspert. Atomicexpert.com, P.4220299. https://atomicexpert.com/page4232963.html)
  2. Ибрагимов, Ш.Ш. Влияние концентрации гелия на высокотемпературное охрупчивание никеля / Ш.Ш. Ибрагимов, О.П. Максимкин, В.Ф. Реутов, К.Г. Фархутдинов, Ш.Б. Шиганаков // ЖТФ. 1985. Т.55. №1. С.198–200. − (Ibragimov, Sh.Sh. Vliyanie kontsentratsii geliya na vysokotemperaturnoe okhrupchivanie nikelya // Sh.Sh. Ibragimov, O.P. Maksimkin, V.F. Reutov, K.G. Farkhutdinov, Sh.B. Shiganakov // Z. Tekhnicheskoj Fiziki. 1985. T.55. №1. S.198−200.)
  3. Углов, В.В. Радиационное материаловедение: учеб.пособ. / В.В. Углов. – Минск: БГУ, 2019. 99 с. − (Uglov, V.V. Radiatsionnoe materialovedenie: uchebnoe posobie / V.V. Uglov. − Minsk: BGU, 2019. 99 р.)
  4. Yu, K.Y. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study / K.Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M.A. Kirk, M. Li, X. Zhang // Philos. Mag. 2013. V. 93. №26. P.3547–3562.
  5. Demkowicz, M.J. The role of interface structure in controlling high helium concentrations / M.J. Demkowicz, A. Misra, A. Caro // Curr. Opin. Solid State Mater. Sci. 2012. V.16. №3. P.101–108.
  6. Кулешова, Е.А. Радиационно-индуцированная структура аустенитных сталей с различным содержанием никеля под действием нейтронного облучения в реакторах СМ-3 и БОР-60 / Е.А. Кулешова, С.В. Федотова, Д.А. Мальцев, А.С. Фролов, Д.В.Сафонов, Н.В. Степанов, Г.М. Жучков, Б.З. Марголин, А.А. Сорокин // Вопр. материаловедения. 2022. Т.4. №112. С.121–155. − (Kuleshova, E.A. Radiatsionno-indutsirovannaya struktura austenitnykh stalei s razlichnym soderzhaniem nikelya pod deistviem neitronnogo oblucheniya v reaktorakh SM-3 i BOR-60 / E.A. Kuleshova, S.V. Fedotova, D.A. Maltsev, A.S. Frolov, D.V. Safonov, N.V. Stepanov, G.M. Zhuchkov, B.Z. Margolin, A.A. Sorokin // Voprosy materialovedeniya. 2022. T.4. №112. S.121–155.)
  7. Berthod, P. Microstructure evolution in the bulk and surface states of chromium-rich nickel-based cast alloys reinforced by hafnium carbides after exposure to high temperature in air / P. Berthod, E. Conrath // Mater. High Temp. 2014. V.31. №3. P.266–273.
  8. Farhan, M. Synthesis and properties of electroless Ni-P-HfC nanocomposite coatings / M. Farhan, O. Fayyaz, M. Nawaz, A.B. Radwan, R.A. Shakoor // Mater. Chem. Phys. 2022. V.291. Art.126696.
  9. Conrath, E. Properties of a HfC-reinforced nickel-based superalloy in creep and oxidation at 1100°C / E. Conrath, P. Berthod // Mater. Sci. 2018. V.53. №6. P.861−867.
  10. Berthod, P. Consequences of partial {Hf by Ta}-substitution on the high temperature properties of a HfC–reinforced Ni-based superalloy / P. Berthod, D.A. Kane, L. Aranda // Mater. Chem. Phys. 2021. V.271. Art.124949.
  11. Лиознов, Г.Л. Газофазные ядерные двигатели для космических аппаратов / Г.Л. Лиознов // Науч.-техн. журнал «Двигатель». 1999. №5–6. С.41. − (Lioznov, G.L. Gazofaznye yadernye dvigateli dlya kosmicheskikh apparatov // G.L. Lioznov // Nauch.-tekhn. zhurnal “Dvigatel”. 1999. №5–6. S.41)
  12. Чувильдеев, В.Н. Теория неравновесных границ зерен в металлах и её приложения для описания нано- и микрокристаллических материалов / В.Н. Чувильдеев // Вестн. Нижегород. ун-та им. Н.И. Лобачевского. 2010. №5–2. С.124–131. − (Chuvildeev, V.N. Teoriya neravnovesnykh granits zeren v metallakh i eyo prilozheniya dlya opisaniya nano- i mikrokristallicheskikh materialov / V.N. Chuvildeev // Vest. Nizhegorod. Un-ta imeni N.I. Lobachevskogo. 2010. №5–2. S.124–131.)
  13. Laugier, J. LMGP-suite of programs for the interpretation of X-ray experiments / J. Laugier, B. Bochu. − ENSP. Grenoble: Lab. Materiaux genie Phys, 2003.
  14. DIFFRACplus TOPAS. Bruker AXS GmbH. Ostliche. Rheinbruckenstraße 50. D-76187. Karlsruhe. Germany, 2006.
  15. Диаграммы состояния двойных металлических систем: справочник: в 3 т. / под общ. ред. Н.П. Лякишева. − М.: Машиностроение, 1996. Т.1. 992 с. – (Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik : 3 pt. / ed. N.P. Lyakishev. − M.: Mashinostroenie, 1996. V.1. 992 p.)
  16. Portnoi, V.K. Formation of nickel carbide in the course of deformation treatment of Ni-C mixtures / V.K. Portnoi, A.V. Leonov, S.N. Mudretsova, S.A. Fedotov // Phys. Met. Metallogr. 2010. V.109. Is.2. P.153–161.
  17. Диаграммы состояния двойных металлических систем: справочник: в 3 т. / под общ. ред. Н.П. Лякишева. − М.: Машиностроение, 1997. Т.2. 1024 с. – (Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik : 3 pt / ed. N.P. Lyakishev. − M.: Mashinostroenie, 1997. V.2. 1024 p.)
  18. Thompson, J.R. Formation of powdered Hf-Ni, Hf-Cu and Hf-Ru materials by mechanical alloying methods / J.R. Thompson, C. Politis, Y.C. Kim // Mater. Sci. Eng. 1988. V.97. P.31−34.
  19. Li, J.H. Structural transition and glass-forming ability of the Ni–Hf system studied by molecular dynamics simulation / J.H. Li, L.T. Kong, B.X. Liu // J. Mater. Res. 2004. V.19. №12. P.3547–3555.
  20. Lyakhov, N. Rapid mechanochemical synthesis of titanium and hafnium carbides / N. Lyakhov, T. Grigoreva, V.Šepelák, B.Tolochko, A. Ancharov, S. Vosmerikov, E. Devyatkina, Т. Udalova, S. Petrova // J. Mater. Sci. 2018. V.53. №19. P.13584–13591.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. XRD patterns of the products of mechanochemical synthesis in mixtures of nickel, hafnium, carbon powders containing 50 (a, c) and 70 wt.% Ni (b, d)

Download (2MB)
3. Fig. 2. Change in the size L of crystallites (a) and the parameter a of the nickel crystal lattice (b) depending on the duration τМА of mechanical treatment of mixtures with different nickel content (formula for mixture [(100–x)(Hf+C)]+xNi)

Download (654KB)
4. Fig. 3. SEM (BSE) micrographs of powder mixtures of two compositions after 40 s of MA: a, b – 50 and 70 wt.% Ni, respectively

Download (1MB)
5. Fig. 4. SEM (BSE) micrographs of powder mixtures of two compositions after 4 min MA: a, b – 50 and 70 wt.% Ni, respectively

Download (3MB)
6. Fig. 5. SEM (BSE) micrographs of powder mixtures of two compositions after 20 min MA: a, b – 50 and 70 wt.% Ni, respectively

Download (3MB)

Copyright (c) 2025 Russian Academy of Sciences