Magnetoelectric response of a polymer composite filled with a mixture of CoFe2O4/BaTiO3 particles

Capa

Citar

Texto integral

Resumo

We studied the magnetoelectric response of a composite material based on a rubber-like polymer filled with submicron-sized cobalt ferrite and barium titanate particles. Using a computer experiment, the dependence of the magnetoelectric response of a representative volume of such a composite on the system parameters is studied. Based on the results of the computer experiment, methods for enhancing the magnetoelectric response of such composites are proposed.

Sobre autores

A. Ignatov

Immanuel Kant Baltic Federal University

Email: artem.ignatov98@gmail.com
Kaliningrad, Russia

O. Stolbov

Immanuel Kant Baltic Federal University; Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Science

Kaliningrad, Russia; Perm, Russia

Yu. Raikher

Immanuel Kant Baltic Federal University; Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Science

Kaliningrad, Russia; Perm, Russia

V. Rodionova

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

Bibliografia

  1. Dai J. Ferroic materials for smart systems: From fundamentals to device applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2020. P. 259.
  2. Makarova L.A., Issev D.A., Omelyanchik A.S. et al. // Polymers. 2022. V. 14. No. 1. Art. No. 153.
  3. Stepanov G.V., Borin D.Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204121.
  4. Date M., Kanamori J., Tachiki M. // J. Phys. Soc. Japan. 1961. V. 16. No. 12. P. 2589.
  5. Амиров А.А., Каминский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 813; Amirov A.A., Kaminskiy A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  6. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 11. Art. No. 1154.
  7. Vida J.V., Turutin A.V., Kubas I.V. et al. // IEEE T—UFFC. 2020. V. 67. P. 1219.
  8. Turutin A.V., Vidal J.V., Kubasov I.V. et al. // J. Magn. Magn. Mater. 2019. V. 486. Art. No. 165209.
  9. Pereira N., Lima A.C., Correia V. et al. // Materials. 2020. V. 13. Art. No. 1729.
  10. Jiang Q., Liu F., Yan H. et al. // J. Amer. Ceram. Soc. 2011. V. 94. P. 2311.
  11. Stognij A.I., Novitskii N.N., Trukhanov S.V. et al. // J. Magn. Magn. Mater. 2019. V. 485. P. 291.
  12. Zhang J., Li P., Wen Y. et al. // Sens. Actuators A. Phys. 2014. V. 214. P. 149.
  13. Spaldin N.A. // Science. 2005. V. 309. P. 391.
  14. Pereira N., Lima A.C., Lanceros-Mendez S., Martins P. // Materials. 2020. V. 13. Art. No. 4033.
  15. Makarova L.A., Alekhina J., Isaev D. et al. // J. Physics D. Appl. Phys. 2021. V. 54. No. 1. Art. No. 015003.
  16. Магомедов К.Э., Омельянчик А.С., Воронцов С.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 819; Magomedov K.E., Omelyanchik A.S., Vorontsov S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 720.
  17. Зубарев А.Ю., Искакова Л.Ю. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 653; Zubarev A.Y., Iskakova L.Y. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 563.
  18. Сивухин Д.В. Общий курс физики. Т. 3. Электричество. Москва: Наука, 1982.
  19. Гайдук Ю.С., Коробко Е.В., Копиков Д.А. и др. // Конденс. среды и межфаз. границы. 2022. Т. 24. № 1. С. 19.
  20. Kang S., Choi K., Nam J.D., Choi H.J. // Materials. 2020. V. 13. Art. No. 4597.
  21. Saveliev D.V., Belyaeva I.A., Chashin D.V. et al. // Materials. 2020. V. 13. Art. No. 3297.
  22. Столбов О.В., Райхер Ю.Л. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 677; Stolbov O.V., Raikher Yu.L. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 586.
  23. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Москва: Наука, 1982.
  24. Желудев Н.С. Электрические кристаллы. М.: Наука, 1979.
  25. Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М.: Наука, 1982.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025