Влияние молекулярного йода на электрокинетические свойства суспензий для электрофоретического осаждения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Представлены результаты исследований электрокинетических свойств и особенностей электрофоретического осаждения (ЭФО) в неводных суспензиях допированного самарием диоксида церия Ce0.8Sm0.2O1.9 (SDC) при добавлении в состав суспензии молекулярного йода концентрацией 0–1 г/л. Установлен эффект инверсии дзета-потенциала в суспензии SDC с увеличением концентрации йода. Обнаружено катодное осаждение в условиях ЭФО в суспензии 10 г/л SDC с добавкой йода (1 г/л) при напряжениях выше порогового значения (6 В), несмотря на отрицательное значение дзета-потенциала (–5.9 мВ), полученное электроакустическим методом. Предложена возможная интерпретация возникновения установленных эффектов, связанная с перекомпенсацией заряда частиц в суспензии при высокой концентрации со- и противоионов в составе двойного электрического слоя (ДЭС).

Full Text

Restricted Access

About the authors

E. Г. Калинина

Институт электрофизики Уральского отделения РАН; Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

Author for correspondence.
Email: jelen456@yandex.ru
Russian Federation, Екатеринбург; Екатеринбург

Д. С. Русакова

Институт электрофизики Уральского отделения РАН

Email: jelen456@yandex.ru
Russian Federation, Екатеринбург

Т. В. Терзиян

Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

Email: jelen456@yandex.ru
Russian Federation, Екатеринбург

References

  1. Kalinina E.G., Pikalova E. Yu. // Russ. Chem. Rev. 2019. V. 88. № 12. P. 1179. https://doi.org/10.1070/RCR4889 [Калинина Е.Г., Пикалова Е.Ю. // Успехи химии. 2019. Т. 88. № 12. С. 1179.]
  2. Hu S., Li W., Finklea H., Liu X. // Adv. Colloid Interface Sci. 2020. V. 276. P. 102102. https://doi.org/10.1016/j.cis.2020.102102
  3. Pikalova E. Yu., Kalinina E.G. // Russ Chem Rev. 2021. V. 90. № 6. P. 703. https://doi.org/10.1070/rcr4966 [Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. № 6. С. 703.]
  4. Osipov V.V., Kotov Yu.A., Ivanov M.G. et al. // Laser Phys. 2006. V. 16. № 1. P. 116. https://doi.org/10.1134/S1054660X06010105
  5. Zhuravlev V.D., Bamburov V.G., Ermakova L.V., Lobachevskaya N.I. // Phys. At. Nucl. 2015. V. 78. № 12. P. 1389. https://doi.org/10.1134/s1063778815120169
  6. Wain-Martin A., Morán-Ruiz A., Vidal K. et al. // Solid State Ion. 2017. V. 313. P. 52. https://doi.org/10.1016/j.ssi.2017.08.021
  7. Kalinina E.G., Samatov O.M., Safronov A.P. // Inorg. Mater. 2016. V. 52. № 8. P. 858. https://doi.org/10.1134/S0020168516080094
  8. Kalinina E.G., Pikalova E. Yu. // Russ. J. Phys. Chem. A. 2021. V. 95. № 9. P. 1942. https://doi.org/10.1134/S0036024421090077 [Калинина Е.Г., Пикалова Е.Ю. // Журнал физической химии. 2021. Т. 95. № 9. С. 1426]
  9. Lyklema J. // Colloids Surf. A Physicochem. Eng. Asp. 2011. V. 376. № 1–3. P. 2. https://doi.org/10.1016/j.colsurfa.2010.09.021
  10. Ishihara T., Shimose K., Kudo T. et al. // J. Am. Ceram. Soc. 2000. V. 83. № 8. P. 1921. https://doi.org/10.1111/j.1151-2916.2000.tb01491.x
  11. Khanali O., Rajabi M., Baghshahi S., Ariaee S. // Surf. Eng. 2017. V. 33. № 4. P. 310. https://doi.org/10.1080/02670844.2016.1259730
  12. Ahmadi M., Aghajani H. // Ceram. Int. 2017. V. 43. № 9. P. 7321. https://doi.org/10.1016/j.ceramint.2017.03.035
  13. Chen F., Liu M. // J. Eur. Ceram. Soc. 2001. V. 21, № 2. P. 127. https://doi.org/10.1016/S0955-2219(00)00195-3
  14. Kalinina E., Shubin K., Pikalova E. // Membranes. 2022. V. 12. № 3. P. 308. https://doi.org/10.3390/membranes12030308
  15. Pikalova E., Osinkin D., Kalinina E. // Membranes. 2022. V. 12. № 7. P. 682. https://doi.org/10.3390/membranes12070682
  16. Safronov A.P., Kalinina E.G., Smirnova T.A. et al. // Russ. J. Phys. Chem. A. 2010. V. 84. № 12. P. 2122. https://doi.org/10.1134/S0036024410120204 [Сафронов А.П., Калинина Е.Г., Смирнова Т.А. и др. // Журн. физ. химии. 2010. Т. 84. № 12. С. 2319.]
  17. Murthy A.S.N., Balasubramanian A., Rao C.N.R., Kasturi T.R. // Can J Chem. 1962. V. 40. № 12. P. 2267. https://doi.org/10.1139/v62–351
  18. Ishihara T., Shimose K., Kudo T. et al. // J. Am. Ceram. Soc. 2000. V. 83. № 8. P. 1921. https://doi.org/10.1111/j.1151-2916.2000.tb01491.x
  19. Quesada‐Pérez M., González‐Tovar E., Martín‐Molina A. et al. // ChemPhysChem. 2003. V. 4. № 3. P. 234. https://doi.org/10.1002/cphc.200390040
  20. De Vos W.M., Lindhoud S. // Colloid Interface Sci. 2019. V. 274. P. 102040. https://doi.org/10.1016/j.cis.2019.102040
  21. Lyklema J. // Colloids Surf. A Physicochem. Eng. Asp. 2006. V. 291. № 1–3. P. 3. https://doi.org/10.1016/j.colsurfa.2006.06.043
  22. Fori B., Taberna P.L., Arurault L., Bonino J.P. // Colloid Interface Sci. 2014. V. 413. P. 31. https://doi.org/10.1016/j.jcis.2013.08.011
  23. Dukhin, A.S., Goetz P.J., Truesdail S. // Langmuir. 2001. V. 17. № 4. P. 964. https://doi.org/10.1021/la001024m
  24. Müller E., Mann C. // J. Chromatogr. A. 2007. V. 1144. № 1. P. 30. https://doi.org/10.1016/j.chroma.2006.11.103
  25. Delgado A.V., González-Caballero F., Hunter R.J. et al. // J. Colloid Interface Sci. 2007. V. 309. № 2. P. 194. https://doi.org/10.1016/j.jcis.2006.12.075
  26. Stotz S. // Colloid Interface Sci. 1978. V. 65. № 1. P. 118. https://doi.org/10.1016/0021-9797(78)90264-3
  27. Neirinck B., Van Der Biest O., Vleugels J.A. // J. Phys. Chem. B. 2013. V. 117. № 6. P. 1516. https://doi.org/10.1021/jp306777q
  28. Khair A.S. // Curr. Opin. Colloid. Interface Sci. 2022. V. 59. P. 101587. https://doi.org/10.1016/j.cocis.2022.101587
  29. Tricoli V., Corinaldesi F.F. // Langmuir. 2022. V. 38. P. 11250. https://doi.org/10.1021/acs.langmuir.2c01316
  30. Kalinina E.G. // Russ. J. Phys. Chem. A. 2022. V. 96. № 9. P. 2032. https://doi.org/10.1134/S0036024422090163 [Калинина Е.Г. // Журн. физ. химии. 2022. Т. 96. № 9. P. 1347.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns for SDC-m (a) and SDC-n (c) samples; SEM image of the morphology of microsized SDC-m particles (b); TEM image of the morphology of SDC-n nanoparticles (d)

Download (430KB)
3. Fig. 2. Dependences of zeta potential (a) and pH (b) on the iodine concentration in a 10 g/l SDC suspension (1) and an iPrOH/HAcAc dispersion medium (90/10 vol. %, 2).

Download (86KB)
4. Fig. 3. Dependence of the coating thickness (d) on the voltage (U) during EPD from a 10 g/l SDC suspension without the addition of iodine (deposition time 1 min).

Download (54KB)
5. Fig. 4. Change in the thickness of the SDC EFO coating (d) and the resistance of the suspension (R) with an increase in the iodine concentration during deposition in the constant voltage mode of 80 V, 1 min.

Download (72KB)
6. Fig. 5. Dependences of the zeta potential of the SDC suspension on the concentration of added iodine, measured by the electroacoustic method (1) and the EFRS method (2).

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences