Эффективный газовый ионный источник с объемным зарядом

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Характеристики ионного источника с газовым наполнением и инжекцией электронов были изучены в рамках разработки генератора ионов изомерного состояния 229mTh. Проведены расчеты распределения электрического потенциала и плотности электронов в среде гелия. Измерена эффективность эвакуации ионов. Созданная методика отличается высокими эффективностью и быстродействием в сочетании с возможностью формирования интенсивного пучка ионов продуктов радиоактивного распада и ядерных реакций.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Ю. Гусев

Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: popov_av@pnpi.nrcki.ru
Ресей, 188300, Гатчина, Ленинградская обл., мкр. Орлова роща, 1

Ю. Нечипоренко

Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: popov_av@pnpi.nrcki.ru
Ресей, 188300, Гатчина, Ленинградская обл., мкр. Орлова роща, 1

Ю. Новиков

Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: popov_av@pnpi.nrcki.ru
Ресей, 188300, Гатчина, Ленинградская обл., мкр. Орлова роща, 1

А. Попов

Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра “Курчатовский институт”

Хат алмасуға жауапты Автор.
Email: popov_av@pnpi.nrcki.ru
Ресей, 188300, Гатчина, Ленинградская обл., мкр. Орлова роща, 1

Д. Соснов

Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра “Курчатовский институт”

Email: popov_av@pnpi.nrcki.ru
Ресей, 188300, Гатчина, Ленинградская обл., мкр. Орлова роща, 1

Әдебиет тізімі

  1. Moore I.D., Dendooven P., Arje J. // Hyperfine Interact. 2014. V. 223. P. 17. https://doi.org/10.1007/s10751-013-0871-0
  2. Tordoff B., Eronen T., Elomaa V.V., Gulick S., Hager U., Karvonen P., Kessler T., Lee J., Moore I., Popov A., Rahaman S., Rinta-Antila S., Sonoda T., Aysto J. // Nucl. Instr. Meth. Phys Res. 2006. V. 252. P. 347. https://doi.org/10.1016/j.nimb.2006.08.015
  3. Beraud R., Canchel G., Emsallem A., Dendooven P., Huikari J., Huang W., Wang Y., Perajarvi K., Rinta-Antila S., Jokinen A., Kolhinen V.S., Niemenen A., Penttila H., Szeripo J., Aysto J., Bruyneel B., Popov A. // Hyperfine Interactions. 2001. V. 132. P. 485. https://doi.org/10.1023/A:1011979029056
  4. Takamine A., Wada M., Ishida Y., Nakamura T., Okada K., Yamazaki Y., Kambara T., Kanai Y., Kojima T.M., Nakai Y., Oshima N., Yoshida A., Kubo T., Ohtani S., Noda K., Katayama I., Hostain P., Varentsov V., Wollnik H. // Rev. Sci. Instr. 2005. V. 76. P. 103503. https://doi.org/10.1063/1.2090290
  5. Ringle R., Bollen G., Lund K., Nicoloff C., Schwarz S., Sumithrarachchi C.S., Villari A.C.C. // Nucl. Instr. Meth. Phys Res. 2021. V. 496. P. 61. https://doi.org/10.1016/j.nimb.2021.03.020
  6. Peik E., Tamm Chr. // Europhys. Lett. 2003. V. 61. P. 181. https://doi.org/10.1209/epl/i2003-00210-x
  7. Karpeshin F.F., Trzhaskovskaya M.B. // Nucl. Phys. A. 2018. V 969. P. 173. https://doi.org/10.1016/j.nuclphysa.2017.10.003
  8. Карпешин Ф.Ф. // ЭЧАЯ. 2006. Т. 37. № 2. С. 522
  9. Витушкин Л.Ф., Гусев Ю.И., Карпешин Ф.Ф., Новиков Ю.Н., Орлов О., Охапкин М.В., Попов А.В., Тржасковская М.Б. // Законодательная и прикладная метрология. 2022. № 3(177). С. 9.
  10. Sonnenschein V., Moore I.D., Raeder S., Hakimi A., Popov A., Wendt K. // Eur. Phys. J. A. 2012. V. 48(4). P. 52. https://doi.org/10.1140/epja/i2012-12052-3
  11. Von der Wense L., Seiferle B., Laatiaoui M., Neumayr J.B., Maier H.-J., Wirth H.-F., Mokry C., Runke J., Eberhardt K., Düllmann C.E., Trautmann N.G., Thirolf P.G. // Nature. 2016. V. 47. P. 533. https://doi.org/10.1038/nature17669
  12. Von der Wense L., Seiferle B. // Eur. Phys. J. 2020. V. 56. P. 277. https://doi.org/10.1140/epja/s10050-020-00263-0
  13. Karpeshin F.F., Trzhaskovskaya M.B. // Nucl. Phys. 2021. V. 1010. P. 122173. https://doi.org/10.1016/j.nuclphysa.2021.122173
  14. Moore I.D., Kessler T., Sonoda T., Kudryavstev Y., Perajarvi K., Popov A., Wendt K.D.A., Aysto J. // Nucl. Instr. Meth. Phys. Res. B. 2010. V. 268(6). Р. 657. https://doi.org/10.1016/j.nimb.2009.12.001
  15. Попов А.В. Свидетельство о гос. регистрации программ 2018617922. 2018.
  16. Гусев Ю.И., Новиков Ю.Н., Попов А.В., Тихонов В.И. // Изв. РАН. серия физическая. 2016. Т. 80(8). С. 962. https://doi.org/10.7868/S0367676516080184
  17. Huikari J., Dendooven P., Jokinen A., Nieminen A., Penttila H., Perajarvi K., Popov A., Rinta-Antila S., Aysto J. // Nucl. Instr. Meth. Phys. Res. B. 2004. V. 222(3-4). Р. 632. https://doi.org/10.1016/j.nimb.2004.04.164

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Ion source coupled with the ion beam formation circuit: 1 – foils with 233U in a gas cell, 2 – electron emitter, 3 – cathode, 4 – additional electrode, 5 – ceramic insulators, 6 – gas cell, 7 – transport electrodes with static potential, 8 – electrodes with radio-frequency quadrupole potential.

Жүктеу (190KB)
3. Fig. 2. Potential distribution inside the ion source calculated for different emitter currents at a pressure of 50 Torr. The numbers show the potential values ​​for equipotential lines.

Жүктеу (104KB)
4. Fig. 3. Electric field strength (a) and electron density (b) inside the ion source at a pressure of 25 Torr and an emitter current of 1 μA. The solid line is the distribution at zero potential on the foils with deposited uranium. The dashed line is the potential applied to the foils, increasing from 0 to 20 V with distance from the cathode. The abscissa axis indicates the distance to the cathode.

Жүктеу (108KB)
5. Fig. 4. Evacuation efficiency of 219Rn ions at a cathode voltage of -20 V for different values ​​of emitter current and helium pressure.

Жүктеу (110KB)
6. Fig. 5. Dependences of the number of 39K ions, the count of 129Xe ions and alpha particles from the decay of 215Po on the voltage at the cell cathode. The data were obtained at a pressure of 50 Torr.

Жүктеу (84KB)
7. Fig. 6. Ion counting rate measured at different cathode potentials and constant emitter temperature.

Жүктеу (178KB)
8. Fig. 7. Ratio of counting rates of doubly and singly charged 229Th ions depending on the emitter current.

Жүктеу (84KB)

© Russian Academy of Sciences, 2024