Пространственное разрешение изображений и эффективный размер фокуса тормозного излучения усовершенствованного компактного бетатрона SEA-7 с энергией электронов 7 МэВ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Представлены экспериментальные результаты по определению разрешающей способности радиографии с использованием тормозного излучения усовершенствованного компактного бетатрона SEA-7 с энергией 7 МэВ. Измерения проведены с использованием рентгеновской пленки AGFA NDT D4 PbVacuPac и индикатора качества изображений Duplex IQI (model EN 462-5). Полученные результаты демонстрируют различное разрешение (около 0.16 мм) пар тонких проволок индикатора в разных областях конуса излучения, т.е. различный горизонтальный размер эффективного фокуса излучения (около 0.2 мм), что необходимо учитывать при анализе радиографических изображений реальных объектов. Оценен также вертикальный размер фокуса излучения (около 1.4 мм), который перпендикулярен плоскости орбиты электронов.

Full Text

Restricted Access

About the authors

М. М. Рычков

Национальный исследовательский Томский политехнический университет

Author for correspondence.
Email: vsmol@tpu.ru
Russian Federation, 634050, Томск, пр. Ленина, 30

В. В. Каплин

Национальный исследовательский Томский политехнический университет

Email: vsmol@tpu.ru
Russian Federation, 634050, Томск, пр. Ленина, 30

В. А. Смолянский

Национальный исследовательский Томский политехнический университет

Email: vsmol@tpu.ru
Russian Federation, 634050, Томск, пр. Ленина, 30

References

  1. http://rareearth.ru/ru/news/20170222/02990.html
  2. Website of the IE-NTD Ltd: www.ie-ndt.co.uk/imagequalityindex.html
  3. Bavendiek K., Ewert U., Riedo A., Heike U., Zscherpel U. 18th World Conf. Nondestruct. Testing. Durban, 2012. P. 16. http://www.ndt.net/article/wcndt2012/papers/346_ wcndtfinal00346.pdf
  4. ISO 17636-2 Non-destructive testing of welds. Radiographic testing: Part 2: X- and gamma-ray techniques with digital detectors. Moscow, Standardinform. 2018. P. 53.
  5. https://files.ncontrol.ru/upload/storage/blog/ndt/gost_ 17636-2.pdf
  6. Sorokin V.B., Malikov E.L. // Instruments and Experimental Techniques. 2021. V. 64. № 3. P. 483. https://doi.org/10.1134/S0020441221020184
  7. Sorokin V.B., Lutsenko A.S., Gentselman V.G. // Instruments and Experimental Techniques. 2018. V. 61. № 2. P. 192. https://doi.org/10.1134/S0020441218020082
  8. Sukharnikov K.V., Rychkov M.M., Gentselman V.G. // Journal of Physics: Conference Series. 2016. V. 671. P. 012058. https://doi.org/10.1088/1742-6596/671/1/012058
  9. https://portal.tpu.ru/departments/institut/ink/science/ Designs/krab

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a) The scheme of the experimental installation (top view): 1 is a betatron chamber, 2 is a molybdenum target on an electron injector, 3 is a copper filter, 4 is a radiation dosimeter, 5 is a Duplex IQI on an assembly of four steel blocks in a goniometer, 6 is an X–ray film in a holder. b) A scheme for generating braking radiation (γ) by accelerated electrons (e) in a target on an electron injector. c) Photo of the opened SEA-7 betatron: 1 – betatron chamber, 2 – nozzle with injector, 3 – radiation dosimeter.

Download (305KB)
3. Fig. 2. a) A photograph of a beam of braking radiation generated by electrons with an energy of 7 MeV of the SEA-7 betatron. b) A blackening density profile along a horizontal line passing through the center of the blackening spot (symbols “0” in the photo and a solid arrow “0" (θγ = 0) on the densitogram. The symbols “*” in the photo of the radiation beam and arrows 1-3 on the densitogram show the positions of the 10th pair of wires of the standard during measurements.

Download (136KB)
4. Fig. 3. a) Enlarged (K = 4) image of a part of the Duplex IQI standard with the 10th-4th pairs of wires (10 – 4) mounted horizontally in a beam of braking radiation on an assembly of four steel parallelepipeds. b) A densitogram showing the resolutions of the 10th-4th pairs of wires (10-4), and an enlarged section of the densitogram corresponding to the 10th pair of wires (10). The densitogram is measured along a horizontal line that is perpendicular to the images of the pairs.

Download (126KB)
5. Fig. 4. Densitograms of images of a part of the Duplex IQI standard, when the 10th pair of wires (10) is located almost in the center (θγ = 0.2°, Fig. 2) the radiation beam (a) and at an angle of 1.4° (θγ = 1.4°, Fig. 2) to the axis of the radiation beam (b). Enlarged sections of the densitograms are also shown, demonstrating the resolutions of the 11th (11), 10th (10) (a) and 12th (12), 11th (11) (b) pairs of wires of the standard.

Download (158KB)
6. Fig. 5. a) An enlarged (K = 2.4) image of a part of the Duplex IQI standard with the 1st-8th pairs of wires (1-8) mounted vertically in a beam of braking radiation. b) A densitogram showing the resolutions of the 1st–6th pairs of wires (1-6). The densitogram is measured along a vertical line that is perpendicular to the images of the pairs.

Download (126KB)
7. Fig. 6. Densitograms of images of the edge of the plastic housing of the Duplex IQI standard with a thickness of tp = 4 mm, located in the radiation beam at angles θγ = -3.5° (a), -2.2° (b), -1° (c) to the axis of the radiation beam (Fig. 2).

Download (110KB)
8. Fig. 7. a) An image of a part of a steel assembly with gaps 1, 2 and 3 between its parts with a width of 10 microns. b) A densitogram showing the brightness profiles (1-3) of the images of gaps (1-3) in the assembly installed in the radiation beam so that the gaps 1, 2, 3 are located at angles = 0.74°, – 0.74°, – 2.22° accordingly, to the axis of the radiation beam (Fig. 2). The densitogram was measured along a horizontal line that is perpendicular to the gap images. The enlarged brightness profiles of the images of gaps 1 and 2 are also shown.

Download (90KB)

Copyright (c) 2024 Russian Academy of Sciences