Thermoluminescence of dense β-Ga2O3 ceramics synthesized by gas-thermal spraying

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of studying the structural and phase composition, optical and thermoluminescent properties of β-Ga2O3 ceramic samples obtained by plasma gas-thermal spraying from the perspective of its application as a luminescent material. Both synthesized samples and those that had undergone post-growth high-temperature and plasma treatment were studied. It is shown that synthesized ceramic samples without additional processing do not provide the necessary sensitivity to radiation due to the high concentration of their own F-type defects, and the thermoluminescence peak is located at a temperature of 350°C, which is inconvenient for registration. Samples of β-Ga2O3 ceramics with post-growth high-temperature and plasma treatment, high thermoluminescence yield and thermoluminescence peak located at 120°C are competitive in comparison with thermoluminescent detectors on the market when irradiated with doses in the range of 0.2–2.5 Gy.

About the authors

N. L. Aluker

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences

650000, Kemerovo, Russia

A. S. Artamonov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

115409, Moscow, Russia

A. E. Muslimov

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
119333, Moscow, Russia

M. K. Gadzhiev

Joint Institute for High Temperatures, Russian Academy of Sciences

125412, Moscow, Russia

M. V. Ilyichev

Joint Institute for High Temperatures, Russian Academy of Sciences

125412, Moscow, Russia

A. S. Tyuftyaev

Joint Institute for High Temperatures, Russian Academy of Sciences

125412, Moscow, Russia

A. V. Butashin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

119333, Moscow, Russia

V. M. Kanevsky

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

119333, Moscow, Russia

D. R. Nurmukhametov

Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences

650000, Kemerovo, Russia

References

  1. Mc Keever S.W. // Radiat. Meas. 2024. V. 171. P. 107062. https://doi.org/10.1016/j.radmeas.2024.107062
  2. Aluker N.L., Artamonov A.S., Herrmann M. // Instrum. Exp. Tech. 2021. V. 64. P. 437. https://doi.org/10.1134/S0020441221020214
  3. Sankowska M., Bilski P., Marczewska B., Zhydachevskyy Y. // Materials. 2023. V. 16. № 4. P. 1489. https://doi.org/10.3390/ma16041489
  4. Бараночников М.Л. // Приемники и детекторы излучений. Справочник. М.: ДМК Пресс, 2012. С. 48.
  5. Luchechko A., Vasyltsiv V., Kushlyk M. et al. // Materials. 2024. V. 17. № 6. P. 1391. https://doi.org/10.3390/ma17061391
  6. Remple C., Huso J., Weber M. H. et al. // J. Appl. Phys. 2024. V. 135. P. 185702. https://doi.org/10.1063/5.0196824
  7. Harwig T., Kellendonk F., Slappendel S. // J. Phys. Chem. Solids. 1978. V. 39. № 6. P. 675. https://doi.org/10.1016/0022-3697(78)90183-X
  8. Муслимов А.Э., Гаджиев М.Х., Тюфтяев А.С. и др. // Письма в ЖТФ. 2025. Т. 51. Вып. 6. С. 42. https://doi.org/10.61011/PJTF.2025.06.59931.20146
  9. Aluker N.L., Artamonov A.S., Herrmann M. et al. // Instrum. Exp. Tech. 2021. V. 64. P. 860. https://doi.org/10.1134/S0020441221050158
  10. Gadzhiev M.Kh., Muslimov A.E., Yusupov D.I. et al. // Materials. 2024. V. 17. № 24. P. 6078. https://doi.org/10.3390/ma17246078
  11. Zhang Z., Farzana E., Arehart A.R., Ringel S.A. // Appl. Phys. Lett. 2016. V. 108. P. 52105. https://doi.org/10.1063/1.4941429
  12. Luchechko A., Vasyltsiv V., Kostyk L. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 441. P. 12. https://doi.org/10.1016/j.nimb.2018.12.045
  13. Tuttle B.R., Karom N.J., O’Hara A. et al. // Physics. 2023. V. 133. P. 015703. https://doi.org/10.1063/5.0124285
  14. Esteves D.M., Rodrigues A.L., Alves L.C. et al. // Sci. Rep. 2023. V. 13. № 1. P. 4882. https://doi.org/10.1038/s41598-023-31824-0
  15. Petkov A., Cherns D., Chen W.Y. et al. // Appl. Phys. Lett. 2022. V. 121. № 17. P. 171903. https://doi.org/10.1063/5.0120089
  16. Kaur D., Kumar M. // Adv. Opt. Mater. 2021. V. 9. № 9. P. 2002160. https://doi.org/10.1002/adom.202002160
  17. Manikanthababu N., Sheoran H., Siddham P., Singh R. // Crystals. 2022. V. 12 № 7. P. 1009. https://doi.org/10.3390/cryst12071009
  18. Guo D.Y., Qian Y.P., Su Y.L. et al. // AIP Adv. 2017. V. 7. № 6. P. 065312. https://doi.org/10.1063/1.4990566

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences