Composite perfluorinated membranes modified by polyvinyl alcohol cross-linked with sulfosuccinic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid on the structure, morphology, physical, mechanical and electrochemical properties of composite membranes made of domestic perfluorinated copolymer, an analogue of Nafion, and PVA was studied. An increase in the amount of cross-linked PVA in the membrane leads to an increase in proton conductivity. The crystallinity of the composites depends on the proportion of the cross-linking agent. The morphology of the membrane surfaces varies significantly: the lower surface has a uniform microstructure, and the upper surface forms three-dimensional folded structures during self-organization of polymer chains in the surface layer. According to energy-dispersive analysis, the two layers of the membrane differ significantly in chemical composition, which is illustrated by the distribution profiles of fluorine across the membrane thickness. The observed structural and morphological features of the membranes explain the differences in their proton conductivity.

About the authors

O. N. Primachenko

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

Email: alex-prima@mail.ru
St. Petersburg, 199004, Russia

E. A. Marinenko

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

St. Petersburg, 199004, Russia

V. T. Lebedev

Neutron Researches Department, Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”

Gatchina, Russia

V. A. Orlova

Khlopin Radium Institute

St. Petersburg, Russia

V. D. Vavilova

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

St. Petersburg, 199004, Russia

I. V. Gofman

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

St. Petersburg, 199004, Russia

O. S. Lezova

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Grebenshchikov Institute of Silicate Chemistry

Email: svkononova@list.ru
St. Petersburg, 199034, Russia

V. V. Klechkovskaya

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Moscow, 119333, Russia

E. N. Vlasova

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

St. Petersburg, 199004, Russia

S. V. Kononova

Branch of Konstantinov St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” – Institute of Macromolecular Compounds

Email: svkononova@list.ru
St. Petersburg, 199004, Russia

References

  1. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987. https://doi.org/10.1021/acs.chemrev.6b00159
  2. Sigwadi R., Nemavhola F. // Membranes. 2023. V. 13. P. 887. https://doi.org/10.3390/membranes13120887
  3. Giancola S., Zaton M., Reyes-Carmona A. et al. // J. Membr. Sci. 2019. V. 570–571. P. 69. https://doi.org/10.1016/j.memsci.2018.09.063
  4. Wang H., Zhang J., Ning X. et al. // Int. J. Hydrogen Energy. 2021. V. 46. P. 25225.
  5. doi.org/10.1016/j.ijhydene.2021.05.048
  6. Chen T., Lv B., Sun S. et al. // Membranes. 2023. V. 13. P. 308. https://doi.org/10.3390/membranes13030308
  7. Prykhodko Y., Fatyeyeva K., Hespel L. et al. // Chem. Engin. J. 2021. V. 409. P. 127329. https://doi.org/10.1016/j.cej.2020.127329
  8. Gagliardi G.G., Ibrahim A., Borello D. et al. // Molecules. 2020. V. 25. P. 1712. https://doi.org/10.3390/molecules25071712
  9. Arslanova A.A., Sanginov E.A., Dobrovol,srii Yu.A. // Rus. J. Electrochem. 2018. V. 54. P. 318. https://doi.org/10.1134/S1023193518030035
  10. Ali N., Ali F., Khan S. et al. // J. Mol. Struct. 2021. V. 1231. P. 129940. https://doi.org/10.1016/j.molstruc.2021.129940
  11. Boaretti C., Pasquini L., Sood R. et al. // J. Membr. Sci. 2018. V. 545. P. 66. http://dx.doi.org/10.1016/j.memsci.2017.09.055
  12. Фалина И.В., Березина Н.П. // Высокомол. соед. Сер. Б. 2010. Т. 52. С. 715.
  13. Bolto B., Tran T., Hoang M. et al. // Prog. Polym. Sci. 2009. V. 34. P. 969. https://doi.org/10.1016/j.progpolymsci.2009.05.003
  14. Lyozova O.S., Zagrebelny O.A., Krasnopeeva E.L. et al. // Glass Phys. Chem. 2021. V. 47. P. 173. https://doi.org/10.1134/S1087659621020061
  15. Lezova O.S., Myasnikov D.V., Shilova O.A. et al. // Int. J. Hydrogen Energy. 2022. V. 47. P. 4846. https://doi.org/10.1016/j.ijhydene.2021.11.158
  16. Bakangura E., Wu L., Ge L. et al. // Progr. Polym. Sci. 2016. V. 57. P. 103. http://dx.doi.org/10.1016/j.progpolymsci.2015.11.004 0079-6700
  17. Kim D.J., Jo M.J., Nam S.Y. // J. Ind. Engin. Chem. 2015. V. 21. P. 36. http://dx.doi.org/10.1016/j.jiec.2014.04.030
  18. Liu C.-P., Dai C.-A., Chao C.-Y. et al. // J. Power Sources. 2014. V. 249. P. 285. http://dx.doi.org/10.1016/j.jpowsour.2013.10.117
  19. Primachenko O.N., Marinenko E.A., Gubanova G.N. et al. // Russ. J. Gen. Chem. 2024. V. 94. P. 853. https://doi.org/10.1134/S1070363224040121
  20. Tsai C.-E., Lin C.-W., Hwang B.-J. // J. Power Sources. 2010. V. 195. P. 2166. https://doi.org/10.1016/j. jpowsour.2009.10.055
  21. Барбашов В.И., Чайка Э.В. // Физика и техника высоких давлений. 2019. Т. 29. С. 116.
  22. Барбашов В.И., Чайка Э.В. // Физика и техника высоких давлений. 2021. Т. 31. С. 39.
  23. Dong F., Xu S., Wu X. et al. // Separ. Purificat. Technol. 2021. V. 267. P. 118629. https://doi.org/10.1016/j.seppur.2021.118629
  24. Rhim J., Park H., Lee C. et al. // J. Membr. Sci. 2004. V. 238. P. 143. https://doi.org/10.1016/j.memsci.2004.03.030
  25. Rao A.S., Rashmi K.R., Manjunatha D.V. et al. // Mater. Today Proc. 2021. V. 35. P. 344. https://doi.org/10.1016/j.matpr.2020.02.093
  26. Molla S., Compan V., Gimenez E. et al. // Int. J. Hydrogen Energy. 2011. V. 36. P. 9886. https://doi.org/10.1016/j.ijhydene.2011.05.074
  27. Ivanchev S.S., Likhomanov V.S., Primachenko O.N. et al. // Petr. Chem. 2012. V. 52. P. 453. https://doi.org/10.1134/S0965544112070067
  28. Primachenko O.N., Odinokov A.S., Marinenko E.A. et al. // J. Fluor. Chem. 2021. V. 244. P. 109736. https://doi.org/10.1016/j.jfluchem.2021.109736
  29. Kim H., Lee S., Kim S. et al. // J. Mater. Sci. 2017. V. 52. P. 2400. https://doi.org/10.1007/s10853-016-0534-z
  30. De Bonis C., Cozzi D., Mecheri B. et al. // Electrochim. Acta. 2014. V. 147. P. 418. https://doi.org/10.1016/j.electacta.2014.09.135
  31. Сафронова Е.Ю., Воропаева Д.Ю., Новикова С.А. и др. // Мембраны и мембранные технологии. 2022. Т. 12. С. 47. https://doi.org/10.1134/S221811722201007
  32. Примаченко О.Н., Кульвелис Ю.В., Лебедев В.Т. и др. // Мембраны и мембранные технологии. 2020. Т. 10. С. 3. https://doi.org/10.1134/S221811722001006X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences