Defects initiating fatigue faults in granular alloy EP741NP (part II)
- Authors: Artemov V.V.1, Bondarenko V.I.1, Artamonov M.A.2, Kumskov A.S.1, Pavlov I.S.1, Marchukov E.Y.2, Vasiliev A.L.1,3
-
Affiliations:
- Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”
- Lyulka Experimental Design Bureau, Branch of PJSC "UEC-UMPO"
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 70, No 5 (2025)
- Pages: 722-731
- Section: REAL STRUCTURE OF CRYSTALS
- URL: https://vestnik-pp.samgtu.ru/0023-4761/article/view/693865
- DOI: https://doi.org/10.31857/S0023476125050022
- EDN: https://elibrary.ru/veddeq
- ID: 693865
Cite item
Abstract
About the authors
V. V. Artemov
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”Moscow, 119333 Russia
V. I. Bondarenko
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”Moscow, 119333 Russia
M. A. Artamonov
Lyulka Experimental Design Bureau, Branch of PJSC "UEC-UMPO"Moscow, Russia
A. S. Kumskov
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”Moscow, 119333 Russia
I. S. Pavlov
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”Moscow, 119333 Russia
E. Y. Marchukov
Lyulka Experimental Design Bureau, Branch of PJSC "UEC-UMPO"Moscow, Russia
A. L. Vasiliev
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)
Email: a.vasiliev56@gmail.com
Moscow, 119333 Russia; Dolgoprudny, Russia
References
- Павлов И.С., Артамонов М.А., Артемов В.В. и др. // Кристаллография. 2024. Т. 69. № 6. С. 927. https://doi.org/10.31857/S0023476124060027
- Волков А.М., Карашаев М.М., Летников М.Н. и др. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
- Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
- Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
- Ida S., Yamagata R., Nakashima H. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
- Zhao S., Xie X., Smith G.D. et al. // Mater. Sci. Eng. A. 2003. V. 355. P. 96. https://doi.org/10.1016/S0921-5093(03)00051-0
- Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
- Трунькин И.Н., Артамонов М.А., Овчаров А.В. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
- Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
- Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
- Peng Y., Huang G., Long L. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
- Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
- Taylor J.R., Dinsdale A.T., Hilleit M. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916(92)90005-I
- Alper A.M., McNally R.N., Ribbe P.H. et al. // J. Am. Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
- Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
- Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
- Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
- Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
- Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5
- He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
- Nagajyothi G., Raghuveera E. // Int. J. Adv. Res. Electron. Commun. Eng. 2016. V. 5. P. 2362.
- Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
- Бендат Дж., Пирсол А. Примения корреляционного и спектрального анализа. Пер. с англ. М.: Мир, 1983, 312 с.
- Land E.W., McMann J.J. // J. Opt. Soc. Am. 1971. V. 61. № 1. P. 1. https://doi.org/10.1364/JOSA.61.000001
- Jobson D.J., Rahman Z., Wodell G.A. // IEEE Trans. Image Process. 1997. V. 6. № 7. P. 965. https://doi.org/10.1109/83.597272
- Rahman Z., Jobson D.J., Woodel G.A. // J. Electron. Imaging. 2004. V. 13. № 1. P. 100. https://doi.org/10.1117/1.1636183
- Гонзалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
- Limaye A. // SPIE, San Diego. 2012. V. 8506
- Hu D., Limaye A., Lu J. // R. Soc. Open Sci. 2020. https://doi.org/10.1098/rsos.201033
Supplementary files
