Studying the X-ray absorption fine structure spectra of a protein monolayer on liquids. The possibilities of multi-pass technique.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For the first time, the extended fine structure of the absorption spectra for a protein monolayer on a liquid surface has been measured. We used as a test object human serum albumin treated with zinc chloride solution at a critically low concentration (3.6 × 10–7 M), which is comparable to the zinc concentration in blood serum. A multi-pass technique for detecting fluorescence radiation under total external reflection conditions was applied. The temporal stability of the Zn K-edge absorption spectra was examined using weighted regression analysis. It is shown that the error of the oscillating part of the total spectrum did not exceed 1%, which allowed to determine the radius of the first coordination sphere with an accuracy of ±0.01 Å.

About the authors

N. N. Novikova

National Research Center “Kurchatov Institute”

Email: nn-novikova07@yandex.ru
123182, Moscow, Russia

A. L. Trigub

National Research Center “Kurchatov Institute”

123182, Moscow, Russia

A. V. Rogachev

National Research Center “Kurchatov Institute”

123182, Moscow, Russia

G. E. Yalovega

Southern Federal University

Faculty of Physics, 344090, Rostov-on-Don, Russia

V. Y. Lysenko

Southern Federal University

Faculty of Physics, 344090, Rostov-on-Don, Russia

E. V. Pronina

Southern Federal University

Faculty of Physics, 344090, Rostov-on-Don, Russia

O. V. Kosmachevskaya

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

119071 Russia

A. F. Topunov

Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences

119071 Russia

S. N. Yakunin

National Research Center “Kurchatov Institute”

123182, Moscow, Russia

References

  1. Mara M.W., Hardt R.G.H., Reinhard M.E. et al. // Science. 2017. V. 356. P. 1276. https://doi.org/10.1126/science.aam6203
  2. Boffi F., Ascone I., Della Longa S. et al. // Eur. Biophys. J. 2003. V. 32. Р. 329. https://doi.org/10.1007/s00249-003-0283-1
  3. Wang C., Zhang R., Wei X. et al. // Adv. Immunol. 2020. V. 145. P. 187. https://doi.org/10.1016/bs.ai.2019.11.007
  4. Blindauer C.A., Harvey I., Bunyan K.E. et al. // J. Biol. Chem. 2009. V. 284. P. 23116. https://doi.org/10.1074/jbc.M109.003459
  5. Handing K.B., Shabalin I.G., Kassaar O. et al. // Chem. Sci. 2016. V. 7. P. 6635. https://doi.org/10.1039/c6sc02267g
  6. Al-Harthi S., Chandra K., Jaremko L. // Front. Chem. 2022. V. 10. P. 942585. https://doi.org/10.3389/fchem.2022.942585
  7. Ankudinov A., Ravel B. // Phys. Rev B. 1998. V. 58. P. 7565. https://doi.org/10.1103/PhysRevB.58.7565
  8. Hedin L., Lundqvist B. // J. Phys. C. 1971. V. 4. P. 2064. https://doi.org/10.1088/0022-3719/4/14/022
  9. Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
  10. Sugio S., Kashima A., Mochizuki S. et al. // Protein Eng. 1999. V. 12. P. 439. https://doi.org/10.1093/protein/12.6.439
  11. Рогачев А.В. Развитие поверхностно-чувствительных рентгеновских методов для нанодиагностики биоорганических слоев на жидкости: Дис. … канд. физ.-мат. наук. М.: НИЦ КИ, 2022. 198 с.
  12. Klockenkämper R., Von Bohlen A. Total-reflection X-ray fluorescence analysis and related methods. John Wiley and Sons, 2015. 552 p.
  13. Benjamini Y., Hochberg Y. // J. R. Stat. Soc. B. 1995. V. 57. P. 289. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  14. Altman D.G., Bland J.M. // BMJ. 2005. V. 331. P. 903. https://doi.org/10.1136/bmj.331.7521.903
  15. Yalovega G.E., Kremennaya M.A. // Crystallography Reports. 2020. V. 65. P. 813. https://doi.org/10.1134/S1063774520060395
  16. Novikova N.N., Kovalchuk M.V., Yurieva E.A. et al. // J. Phys. Chem. B. 2019. V. 123. P. 8370. https://doi.org/10.1021/acs.jpcb.9b06571
  17. Smolentsev G., Feiters M.C., Soldatov A.V. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 575. P. 168. https://doi.org/10.1016/j.nima.2007.01.059
  18. Joly Y. // Phys. Rev. 2001. V. 63. P. 125120. https://doi.org/10.1103/physrevb.63.125120
  19. Лысенко В.Ю., Кременная М.А., Яловега Г.Э. // Кристаллография. 2023. Т. 68. С. 228. https://doi.org/10.31857/S002347612302011X
  20. Chen W.T., Liao Y.H., Yu H.M. et al. // J. Biol. Chem. 2011. V. 286. P. 9646. https://doi.org/ 10.1074/jbc.M110.177246
  21. Zahid M., Chen N., Liu D. et al. // Chem. Phys. Lett. 2024. V. 854. P. 141559. https://doi.org/10.1016/j.cplett.2024.141559
  22. Roy A., Tiwari S., Karmakar S. et al. // Int. J. Biol. Macromol. 2019. V. 123. P. 409. https://doi.org/10.1016/j.ijbiomac.2018.11.120
  23. Maciazek-Jurczyk M., Janas K., Pozycka J. et al. // Molecules. 2020. V. 25. P. 618. https://doi.org/ 10.3390/molecules25030618
  24. Хромова В.С., Мышкин А.Е. // Журн. общей химии. 2002. Т. 72. С. 1645.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences