A new method of phase-contrast microscopy of microobjects using a nanofocusing lens in synchrotron radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We present the first results of a new experimental method for phase-contrast microscopy of microobjects based on synchrotron radiation and a nanofocusing lens in a conical geometry. In the experiment, a secondary radiation source is formed at the lens focus, located at a short distance from the microobject, enabling the acquisition of its magnified image. Under near-field conditions, the structure of the microobject can be relatively easily retrieved from the experimental image using the transport-of-intensity equation. The experiment was conducted at the KISI-Kurchatov synchrotron radiation source. A model weakly absorbing microobject, namely a commercially available carbon fiber of grade VMN-4, was used. The fiber dimensions and structural features were obtained with submicron spatial resolution, in agreement with the electron microscopy results.

About the authors

M. S. Folomeshkin

National Research Centre “Kurchatov Institute”

Email: folmaxim@gmail.com
123182, Moscow, Russia

V. G. Kohn

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

A. Y. Seregin

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

Y. A. Volkovsky

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

A. V. Aleksandrov

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

P. A. Prosekov

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

V. A. Yunkin

Institute of Microelectronics Technology and High-Purity Materials RAS

142432, Chernogolovka, Russia

A. A. Snigirev

Immanuel Kant Baltic Federal University

236016 Kaliningrad, Russia

Y. V. Pisarevsky

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

A. E. Blagov

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

M. V. Kovalchuk

National Research Centre “Kurchatov Institute”

123182, Moscow, Russia

References

  1. Ковальчук М.В., Благов А.Е., Нарайкин О.С. и др. // Кристаллография. 2022. Т. 67. № 5. С. 726. https://doi.org/10.31857/S0023476122050071
  2. Snigirev A., Snigireva I., Kohn V. et al. // Rev. Sci. Instrum. 1995. V. 66 (12). P. 5486. https://doi.org/10.1063/1.1146073
  3. Аргунова Т.С., Кон В.Г. // Успехи физ. наук. 2019. Т. 189. № 6. С. 643. https://doi.org/10.3367/UFNr.2018.06.038371
  4. Кон В.Г. // Кристаллография. 2022. Т. 67. № 2. С. 892. https://doi.org/10.31857/S0023476122060133
  5. Kohn V.G., Argunova T.S. // Phys. Status Solidi. B. 2022. V. 259. № 4. P. 2100651. https://doi.org/10.1002/pssb.202100651
  6. Фоломешкин М.С., Кон В.Г., Серёгин А.Ю. и др. // Кристаллография. 2024. Т. 69. № 6. С. 919. https://doi.org/10.31857/S0023476124060017
  7. Yunkin V., Grigoriev M.V., Kuznetsov S. et al. // Proc. SPIE. 2004. V. 5539. P. 226. https://doi.org/10.1117/12.563253
  8. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
  9. Teague M.R. // J. Opt. Soc. Am. 1983. V. 73. № 11. P. 1434. https://doi.org/10.1364/JOSA.73.001434
  10. Paganin D., Mayo S.C., Gureyev T.E. et al. // J. Microscopy. 2002. V. 206. № 1. P. 33. https://doi.org/10.1046/j.1365-2818.2002.01010.xTomography
  11. Burvall A., Lundström U., Takman P.A.C. et al. // Opt. Express. 2011. V. 19. № 11. P. 10359. https://doi.org/10.1364/OE.19.010359
  12. Krenkel M., Bartels M., Salditt T. // Opt. Express. 2013. V. 21. № 2. P. 2220. https://doi.org/10.1364/OE.21.002220
  13. Paganin D.M. Coherent X-Ray Optics. New York: Oxford University Press, 2006. 411 p.
  14. Фоломешкин М.С., Кон В.Г., Серегин А.Ю. и др. // Кристаллография. 2023. Т. 68. № 1. С. 5. https://doi.org/10.31857/S0023476123010071
  15. Кон В.Г. // Письма в ЖЭТФ. 2002. Т. 76. С. 701.
  16. Кон В.Г. // ЖЭТФ. 2003. Т. 124. С. 224.
  17. Kohn V.G. // J. Synchrotron Radiat. 2018. V. 25. P. 1634. https://doi.org/10.1107/S1600577518012675
  18. Kohn V.G., Folomeshkin M.S. // J. Synchrotron Radiat. 2021. V. 28. P. 419. https://doi.org/10.1107/S1600577520016495
  19. Kohn V.G. // J. Synchrotron Radiat. 2022. V. 29. P. 615. https://doi.org/10.1107/S1600577522001345
  20. Кон В.Г. 2024. https://xray-optics.ucoz.ru/XR/xrwp.htm
  21. Кон В.Г. 2024. https://kohnvict.ucoz.ru/jsp/1-crlpar.htm
  22. Кон В.Г., Просеков П.А., Серегин А.Ю. и др. // Кристаллография. 2019. Т. 64. № 1. С. 29. https://doi.org/10.1134/S0023476119010144
  23. Virgil'ev Yu.S., Kalyagina I.P. // Inorgan. Mater. 2004. V. 40. Suppl. 1. P. S33. https://doi.org/10.1023/B:INMA.0000036327.90241.5a
  24. Sorokovikov M.N., Zverev D.A., Barannikov A.A. et al. // Nanobiotechnology Reports. 2023. V. 1. Suppl. 1. P. S210. https://doi.org/10.1134/S2635167623601183

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences