OBSERVING OF BACKGROUND ELECTROMAGNETIC RADIATION OF THE REAL SKY THROUGH THE THROAT OF A WORMHOLE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The numerical investigation conducted in this paper addresses the problem of CMB radiation imaging as seen through the throat of the Ellis-Bronnikov-Morris-Thorne wormhole. It is assumed that both throats of the wormhole are relatively close to our stellar neighborhood, so close that the view of the ambient background radiation by an observer at the other throat of the wormhole is virtually identical to that seen from the Solar System neighborhood. A map of the temperature distribution of the cosmic microwave background radiation observed through the mouth of the wormhole has been constructed as well as a view of the Milky Way through the mouth of the wormhole. The resultant image contains characteristic details that enable it to be distinguished from an image produced by a black hole.

作者简介

M. Bugaev

Moscow Institute of Physics and Technology

Dolgoprudnyi, Moscow region, Russia

I. Novikov

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen, DenmarkThe Niels Bohr International Academy, The Niels Bohr Institute; National Research Center Kurchatov Institute, Moscow, Russia 𝑑National Research Center Kurchatov Institute

Moscow, Russia; Copenhagen, Denmark; Moscow, Russia

S. Repin

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: sergerepin1@gmail.com
Moscow, Russia

P. Samorodskaya

Moscow Institute of Physics and Technology

Dolgoprudnyi, Moscow region, Russia

I. Novikov, jr.

Lomonosov Moscow State University, Sternberg Astronomical Institute

Moscow, Russia

参考

  1. H.G. Ellis, J. Math. Phys. 14(1), 104 (1973).
  2. K. Bronnikov, Acta Phys. Polonica B 4, 251 (1973).
  3. M.S. Morris, K.S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61(13), 1446 (1988).
  4. M.S. Morris and K.S. Thorne, American J. Physics 56(5), 395 (1988).
  5. O. James, E. von Tunzelmann, P. Franklin, and K.S. Thorne, American J. Physics 83(6), 486 (2015), arXiv:1502.03809 [gr-qc].
  6. M. Visser, Phys. Rev. D 39(10), 3182 (1989), arXiv:0809.0907 [gr-qc].
  7. N. Tsukamoto and T. Harada, Phys. Rev. D 95(2), id. 024030 (2017), arXiv:1607.01120 [gr-qc].
  8. N. Tsukamoto and Y. Gong, Phys. Rev. D 97(8), id. 084051 (2018), arXiv:1711.04560 [gr-qc].
  9. W. Javed, S. Riaz, R.C. Pantig, and A. Övgün, European Phys. J. C 82(11), id. 1057 (2022), arXiv:2212.00804 [gr-qc].
  10. K.-J. He, Z. Luo, S. Guo, and G.-P. Li, Chin. Phys. C 48(6), id. 065105 (2024).
  11. N. Tsukamoto, European Phys. J. C 83(4), id. 284 (2023), arXiv:2211.04239 [gr-qc].
  12. M. Alloqulov, F. Atamurotov, A. Abdujabbarov, B. Ahmedov, and V. Khamidov, Chin. Phys. C 48(2), id. 025104 (2024).
  13. G.F. Akhtaryanova, R.K. Karimov, R.N. Izmailov, and K.K. Nandi, General Relativ. and Gravit. 56(5), id. 58 (2024).
  14. S.V.M.C.B. Xavier, C.A.R. Herdeiro, and L.C.B. Crispino, Phys. Rev. D 109(12), id. 124065 (2024), arXiv:2404.02208 [gr-qc].
  15. A.G. Agnese and M. La Camera, Phys. Rev. D 51(4), 2011 (1995).
  16. S.I. Vacaru and D. Singleton, J. Math. Phys. 43(5), 2486 (2002), arXiv:hep-th/0110272.
  17. N. Furey and A. DeBenedictis, Classical and Quantum Gravity 22(2), 313 (2005), arXiv:gr-qc/0410088.
  18. E.F. Eiroa, M.G. Richarte, and C. Simeone, Phys. Letters A 373(1), 1 (2008), arXiv:0809.1623 [gr-qc].
  19. M. Botta Cantcheff, N.E. Grandi, and M. Sturla, Phys. Rev. D 82(12), id. 124034 (2010), arXiv:0906.0582 [hep-th].
  20. A. DeBenedictis and D. Horvat, General Relativ. and Gravit. 44(11), 2711 (2012), arXiv:1111.3704 [gr-qc].
  21. T. Ohgami and N. Sakai, Phys. Rev. D 91(12), id. 124020 (2015), arXiv:1704.07065 [gr-qc].
  22. M.K. Zangeneh, F.S.N. Lobo, and M.H. Dehghani, Phys. Rev. D 92(12), id. 124049 (2015).
  23. E. Elizalde and M. Khurshudyan, Phys. Rev. D 98(12), id. 123525 (2018), arXiv:1811.11499 [gr-qc].
  24. R. Shaikh, Phys. Rev. D 98(6), id. 064033 (2018), arXiv:1807.07941 [gr-qc].
  25. N. Godani and G.C. Samanta, European Phys. J. C 80(1), id. 30 (2020), arXiv:2001.00010 [gr-qc].
  26. K.N. Singh, A. Banerjee, F. Rahaman, and M.K. Jasim, Phys. Rev. D 101(8), id. 084012 (2020), arXiv:2001.00816 [gr-qc].
  27. G. Mustafa, Z. Hassan, P.H.R.S. Moraes, and P.K. Sahoo, Phys. Letters B 821, id. 136612 (2021), arXiv:2108.01446 [gr-qc].
  28. O. Sokoliuk, S. Mandal, P.K. Sahoo, and A. Baransky, European Phys. J. C 82(4), id. 280 (2022), arXiv:2204.00223 [gr-qc].
  29. N. Godani, New Astronomy 100, id. 101994 (2023).
  30. N.S. Kardashev, I.D. Novikov, V.N. Lukash, S.V. Pilipenko, et al., Physics Uspekhi 57(12), 1199 (2014), arXiv:1502.06071 [astro-ph.IM].
  31. A. Kar and S. Kar, General Relativ. and Gravit. 56(5), id. 52 (2024), arXiv:2308.12155 [gr-qc].
  32. M.A. Bugaev, I.D. Novikov, S.V. Repin, and A.A. Shelkovnikova, Astron. Rep. 65(12), 1185 (2021), arXiv:2106.03256 [gr-qc].
  33. S.V. Repin, M.A. Bugaev, I.D. Novikov, and I.D. Novikov, Astron. Rep. 66(10), 835 (2022), arXiv:2205.10168 [gr-qc].
  34. M.A. Bugaev, P.S. Samorodskaya, I.D. Novikov, and S.V. Repin, Phys. Rev. D 108(12), id. 124059 (2023), arXiv:2305.18041 [gr-qc].
  35. N.S. Kardashev, I.D. Novikov, and S.V. Repin, Physics Uspekhi 63(6), 617 (2020).
  36. B. Carter, Phys. Rev. 174(5), 1559 (1968).
  37. A.F. Zakharov, Monthly Not. Roy. Astron. Soc. 269, 283 (1994).
  38. A.F. Zakharov and S.V. Repin, Astron. Rep. 43(11), 705 (1999).
  39. M. Bugaev, I. Novikov, S. Repin, and A. Shelkovnikova, in Astronomy at the Epoch of Multimessenger Studies, Proc. of the VAK-2021 Conf., held 23–28 August, 2021 in Moscow, p. 271 (2022).
  40. R. Adam, P.A.R. Ade, N. Aghanim, M. Arnaud, et al., Astron. and Astrophys. 594, id. A9 (2016), arXiv:1502.05956 [astro-ph.CO].
  41. E.V. Mikheeva, S.V. Repin, and V.N. Lukash, Astron. Rep. 64(7), 578 (2020), arXiv:2004.10429 [astroph.GA].
  42. E. Mikheeva, S. Repin, and V.N. Lukash, in Astronomy at the Epoch of Multimessenger Studies, Proc. of the BAK-2021 Conf., held 23–28 August, 2021 in Moscow, p. 292 (2022).
  43. M. Korolik, R.M. Roettenbacher, D.A. Fischer, S.R. Kane, et al., Astron. J. 166(3), id. 123 (2023), arXiv:2307.10394 [astro-ph.SR].
  44. E.K. Baines, S. Blomquist, I. Clark, H. James, Astron. J. 165(2), id. 41 (2023).
  45. P. Rodríguez-Ovalle, A. Mendi-Martos, A. Angulo-Manzanas, I. Reyes-Rodríguez, and M. PérezArrieta, American J. Physics 92(1), 43 (2024), arXiv:2302.11925 [astro-ph.IM].
  46. E.V. Mikheeva, S.V. Repin, and V.N. Lukash, Astron. Rep. 68(1), 1 (2024).

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2025