Elasticity of Highly Entangled Polymer Networks and Gels: Review of Models and Theory of Nonaffine Deformations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The main models of phantom and topologically entangled polymer networks are surveyed. A theory of anisotropic and nonaffine deformation of both swollen and deswollen (with partial solvent removal) strongly entangled polymer networks in athermal and θ-solvents has been developed. It is shown that under weak anisotropic deformations of the deswollen network, the entanglement tube consists of fractal loopy globules. In a θ-solvent, slight deformations of the network lead to a decrease in the overlap of loopy globules without changing their sizes. Deformations of swollen networks, as well as strong deformations of deswollen networks, are described in terms of the slip-tube model. An effective Hamiltonian has been derived that determines the entropy of fractal loopy globules. Based on the Hamiltonian, it is shown that topological constraints can be described using the polymer–quantum diffusion analogy. The connection between topological and quantum entanglements is demonstrated.

Sobre autores

S. Panyukov

Lebedev Physics Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: s.panyukov@gmail.com
Moscow, Russia; Dolgoprudnyi, Moscow oblast, Russia

Bibliografia

  1. Panyukov S. // Polymer Sci. Peer Rev. J. 2020. V. 1. № 1. P. 000505.
  2. Erukhimovich I.Ya. Cand. Dis. Physical and Mathematical Sciences. Moscow: FTINT, 1979.
  3. Borue V.Y., Erukhimovich I.Y. // Macromolecules. 1988. V. 21. P. 3240.
  4. Borue V.Y., Erukhimovich I.Y. // Macromolecules. 1990. V. 23. P. 3625.
  5. Brazovskii S.A. // Sov. Phys. JETP. 1975. V. 41. P. 85.
  6. Leibler L. // Macromolecules 1980. V. 13. № 6. P. 1602.
  7. Dobrynin A.V., Erukhimovich I.Ya. // J. Phys. II. 1991. V. 1. № 11. P. 1387.
  8. Angerman H., Brinke G. ten, Erukhimovich I. // Macromolecules. 1996. V. 29. P. 3255.
  9. Erukhimovich I.Ya. // Sov. Phys. JETP. 1995. V. 108. P. 1004.
  10. Erukhimovich I.Ya., Thamm, M.V., Ermoshkin A.V. // Macromolecules. 2001. V. 34. P. 5653.
  11. Panyukov S.V. // Sov. Phys. JETP. 1985. V. 61. P. 1065.
  12. de Gennes P.G. // Scaling Concepts in Polymer Physics. Ithaka: Cornell Univ. Press, 1979.
  13. James H.M., Guth E. // J. Chem. Phys. 1943. V. 11. P. 455.
  14. Flory P.J., Rehner J. // J. Chem. Phys. 1943. V. 11. P. 521.
  15. Wall F.T. // J. Chem. Phys. 1943. V. 11. P. 527.
  16. Treloar L. // Trans. Faraday Soc. 1943. V. 39. P. 36.
  17. Treloar L.R.G. // The Physics of Rubber Elasticity. New York: Oxford Univ. Press, 1975.
  18. Rubinstein M., Colby R. // Polymer Physics. Oxford: Oxford Univ. Press, 2003.
  19. Panyukov S. // Macromolecules. 2019. V. 52. P. 4145.
  20. Wang R., Alexander-Katz A., Johnson J.A., Olsen B.D. // Phys. Rev. Lett. 2016. V. 116. P. 188302.
  21. Gusev A.A. // Macromolecules. 2019. V. 52. P. 3244.
  22. Lang M. // ACS Macro Lett. 2018. V. 7. P. 536.
  23. Lang M. // Macromolecules. 2019. V. 52. № 16. P. 6266.
  24. Lake G.J., Thomas A.G. // Proc. Roy. Soc. London. A. 1967. V. 300. P. 108.
  25. Wang S., Panyukov S., Craig S.L., Rubinstein M. // Macromolecules. 2023. V. 56. № 6. P. 2309.
  26. Edwards S.F. // Proc. Phys. Soc. 1967. V. 91. P. 513.
  27. Nechaev S.K. // Statistics of Knots and Entangled Random Walks. Singapore:World Scientific; New Jercy: River Edge, 1996.
  28. Likhtman A.E., Ponmurugan M. // Macromolecules. 2014. V. 47. P. 1470.
  29. Frank-Kamenetskiĭ M.D., Vologodskiĭ A.V. // Usp. Fiz. Nauk. 1981. V. 134. P. 641.
  30. Panagiotou E., Kröger M., Millett K.C. // Phys. Rev. E. 2013. V. 88. P. 062604.
  31. Mooney M.J. // Appl. Phys. 1940. V. 11. P. 582.
  32. Rivlin R.S. // Phil. Trans. Roy. Soc. A. 1948. V. 241. P. 379.
  33. Priss S. // Preprint/NTsBI U.S.S.R. Academy of Sciences. Pushchino, 1981.
  34. Schlögl S., Trutschel M.-L., Chassé W., Riess G., Saalwächter K. // Macromolecules. 2014. V. 47. P. 2759.
  35. Kapnisto M., Lang M., Vlassopoulos D., Pyckhout-Hintzen W., Richter D., Cho D., Chang T., Rubinstein M. // Nature Mater. 2008. V. 7. P. 997.
  36. Doi Y., Matsubara K., Ohta Y., Nakano T., Kawaguchi D., Takahashi Y., Takano A., Matsushita Y. // Macromolecules. 2015. V. 48. P. 3140.
  37. Ball R.C., Doi M., Edwards S.F., Warner M. // Polymer. 1981. V. 22. P. 1010.
  38. Edwards S.F., Vilgis Th. // Polymer. 1986. V. 27. P. 483.
  39. Okumura Y., Ito K. // Adv. Mater. 2001. V. 13. P. 485.
  40. Jiang L., Liu C., Mayumi K., Kato K., Yokoyama H., Ito K. // Chem. Mater. 2018. № 30. P. 5013.
  41. Danyang Chen D., Panyukov S., Sapir L., Rubinstein M. // ACS Macro Lett. 2023. V. 12. № 3. P. 362.
  42. Helfand E., Pearson D.S. // J. Chern. Phys. 1983. V. 79. № 4. P. 2054.
  43. Rubinstein M. // Phys.Rev. Lett. 1987. V. 59. № 17. P. 1946.
  44. Nechaev S.K., Semenov A.N., Koleva M.K. // Physica A. 1987. V. 140. P. 506.
  45. Khokhlov A.R., Nechaev S.K. // Phys. Lett. A. 1985. V. 112. № 3–4. P. 156.
  46. Rubinstein M., Helfand. E. // J. Chem. Phys. 1985. V. 82. P. 2477.
  47. Ternovskii F.F., Khoklov A.R. // Sov. Phys. JETP. 1986. V. 63. P. 728.
  48. Zheligovskaya E.A., Ternovsky F.F., Khoklov A.R. // Theor. Math. Phys. 1986. V. 75. № 3. P. 451.
  49. McLeish T.C.B. // Adv. Phys. 2002. V. 51. № 6. P. 1379.
  50. Grosberg A.Yu., Khokhlov A.R. // Statistical Physics of Macromolecules. USA: AIP Press. 1994.
  51. Doi M., Edwards S.F. // Theory of Polymer Dynamics. New York: Acad.Press, 1986.
  52. Larson R.G., Sridhar T., Leal L.G., McKinley G.H., Likhtman A.E., McLeish T.C.B. // J. Rheol. 2003. V. 47. № 3. P. 809.
  53. Edwards S.F. // Proc. Phys. Soc. 1967. V. 92. P. 9.
  54. Ball R.C., Doi M., Edwards S.F., Warner M. // Polymers. 1981. V. 22. P. 1010.
  55. Edwards S.F., Vilgis Th. // Polymers. 1986. V. 27. P. 483.
  56. Edwards S.F., Vilgis T.A. // Rep. Prog. Phys. 1988. V. 51. P. 243.
  57. Priss L.S. // Pure Appl. Chem. 1981. V. 53. P. 1581.
  58. Marrucci G. // Macromolecules. 1981. V. 14. P. 434.
  59. Graessey W.W. // Adv. Polym. Sci. 1982. V. 47. P. 67.
  60. Baumgartner A., Binder K. // J. Chem. Phys. 1981. V. 75. P. 2994.
  61. Kremer K. // Macromolecules .1983. V. 16. P. 1632.
  62. Richter D., Baumgärtner A., Binder K., Ewen B., Hayter J.B. //Phys. Rev. Lett. 1981. V. 47. P. 109.
  63. Panyukov S.V. // Sov. Phys. JETP. 1988. V. 67. P. 2274.
  64. Panyukov S.V. // Sov. Phys. JETP. 1989. V. 69. P. 342.
  65. Likhtman A.E. // Soft Matter 2014. V. 10. P. 1895.
  66. Rubinstein M., Panyukov S. // Macromolecules. 1997. V. 30. P. 8036.
  67. Chen Z., Cohen C., Escobedo F.A. // Macromolecules. 2002. V. 35. P. 3296.
  68. Rubinstein M., Panyukov S. // Macromolecules. 2002. V. 35. P. 6670.
  69. Grest G.S., Putz M., Everaers R., Kremer K. // J. Non-Cryst. Solids 2000. V. 274. P. 139.
  70. Likhtman A.E. // Macromolecules. 2005. V. 38. P. 6128.
  71. Polovnikov K., Nechaev S., Tamm M.V. // Soft Matter. 2018. V. 14. P. 6561.
  72. Brereton M G., Shah S. // J. Phys. A., 1980. V. 13. № 8. P. 2751.
  73. Obukhov S.P., Rubinstein M., Colby R.H. // Macromolecules. 1994. V. 27. P. 3191.
  74. Rubinstein M. // Phys. Rev. Lett. 1986. V. 57. P. 3023.
  75. Obukhov S.P., Rubinstein M., Duke T. // Phys. Rev. Lett. 1994. V. 73. P. 1263.
  76. Obukhov S., Johner A., Baschnagel J., Meyer H., Wittmer J.P. // Eur. Phys. Lett. 2014. V. 105. P. 48005.
  77. Grosberg A.Yu., Nechaev S.K. // Macromolecules. 1991. V. 24. P. 2789.
  78. de Gennes P.G. // J. Phys. Lett. 1985. V. 46. P. 639.
  79. Panyukov S.V. // JETP Lett. 1992. V. 56. P. 61.
  80. Rosa A., Everaers R. // Phys. Rev. Lett. 2014. V. 112. P. 118302.
  81. Ge T., Panyukov S., Rubinstein M. // Macromolecules. 2016. V. 49. P. 708.
  82. Obukhov S., Johner A., Baschnagel J., Meyer H., Wittmer J.P. // Europhys. Lett. 2014. V. 105. P. 48005.
  83. Tamm M.V., Nazarov L.I., Gavrilovand A.A., Chertovich A.V. // Phys. Rev. Lett. 2015. V. 114. P. 178102.
  84. Lifshitz I.M., Grosberg A.Y., Khokhlov A.R. // Revs Modern Physics 1978. V. 50. P. 683.
  85. Leggett A.J. // Phys. Rev. B 1984. V. 30. P. 1208.
  86. Bray A.J., Moore M.A. // Phys. Rev. Lett. 1982. V. 49. P. 1545.
  87. Cai L.-H., Panyukov S., Rubinstein M. // Macromolecules 2015. V. 48. P. 847.
  88. Yamamoto T., Campbell J.A., Panyukov S., Rubinstein M. // Macromolecules. 2022. V. 55. P. 3588.
  89. Panyukov S.V. // Sov. Phys. JETP. 1990. V. 71. P. 372.
  90. Panyukov S. // Polymers. 2020. V. 12. P. 767.
  91. Kavassalis T.A., Noolandi J. // Phys. Rev. Lett. 1987. V. 59. P. 2674.
  92. Kavassalis T.A., Noolandi J. // Macromolecules. 1988. V. 21. P. 2869.
  93. Johner A., Daoud M. // J. Phys. 1989. V. 50. P. 2147.
  94. Urayama K., Kohjiya S. // Polymer. 1997. V. 38. P. 955.
  95. Biamonte J., Faccin M., De Domenico M. // Commun. Phys. 2019. V. 2. P. 53.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (599KB)
3.

Baixar (454KB)
4.

Baixar (1MB)
5.

Baixar (752KB)
6.

Baixar (145KB)
7.

Baixar (173KB)

Declaração de direitos autorais © С.В. Панюков, 2023