A1-A2 splitting in pure 3He in nematic aerogel

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Here, we present the results of vibrating wire experiments in pure 3He (without 4He coverage) in nematic aerogel. We investigated the dependence of splitting of the superfluid transition temperature of 3He in aerogel on magnetic field. In addition to our previous work, we used a wider range of magnetic fields (up to 31 kOe) and managed to detect both the “upper” and “lower” superfluid transition temperatures. The solid paramagnetic 3He layer on the aerogel strands activates the magnetic scattering channel. According to theory, it should result in linear splitting at high (≥ 20 kOe) fields, while at lower fields the splitting is expected to be nonlinear. We were able to observe this nonlinearity, but we have a discrepancy with theoretical predictions regarding the range of fields where nonlinearity occurs. Possible reasons for this are discussed.

Sobre autores

V. Dmitriev

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Moscow, Russia

M. Kutuzov

Metalling Engineering Ltd.

Tallinn, Estonia

D. Petrova

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences; National Research University Higher School of Economics University

Moscow, Russia; Moscow, Russia

A. Soldatov

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Email: soldatov_a@kapitza.ras.ru
Moscow, Russia

A. Yudin

P. L. Kapitza Institute for Physical Problems of Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).
  2. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 127, 265301 (2021).
  3. V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 120, 075301 (2018).
  4. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, Phys. Rev. B 107, 024507 (2023).
  5. E. V. Surovtsev, JETP Lett. 116, 745 (2022).
  6. V. V. Dmitriev, M. S. Kutuzov, A. A. Soldatov, and A. N. Yudin, JETP Lett. 112, 780 (2020).
  7. U. E. Israelsson, B. C. Crooker, H. M. Bozler, and C. M. Gould, Phys. Rev. Lett. 53, 1943 (1984).
  8. J. A. Sauls and P. Sharma, Phys. Rev. B 68, 224502 (2003).
  9. G. A. Baramidze and G. A. Kharadze, J. Low Temp. Phys. 135, 399 (2004).
  10. V. S. Mikheeva and E. V. Surovtsev, JETP Lett. 121, 545 (2025).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025