Structural, electronic, magnetic, and elastic properties of quaternary ZrTM(TM = V, Cr, Mn)TiSi Heusler alloys: first-principles study

Capa
  • Autores: Besahraoui F.1, Dahmane F.2,3
  • Afiliações:
    1. Laboratory of Electronics, Computing and Applied Mathematics (LECAM), Faculty of Sciences and Technology, Tissemsilt University
    2. Laboratory of Modeling and Simulation of Magnetic Properties of Hetero-Structures (LPMH), Faculty of Sciences and Technology, Tissemsilt University
    3. Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Département de Technologie, Universite de Mascara
  • Edição: Volume 122, Nº 5-6 (2025)
  • Páginas: 365-367
  • Seção: Articles
  • URL: https://vestnik-pp.samgtu.ru/0370-274X/article/view/697117
  • DOI: https://doi.org/10.7868/S3034576625090181
  • ID: 697117

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

First-principles calculations were used to explore the electronic,magnetic and elastic properties of ZrTM(TM = V, Cr, Mn)TiSi Heusler alloys. A detailed discussion is presented regarding the half-metallic and magnetic properties at their equilibrium lattice constants. The results showed that for all compounds ZrTM(TM = V, Cr, Mn)TiSi, the type Y1 is energetically more stable at the equilibrium volume. These compounds’ band structures and density of states were examined, and the reason behind half-metallicity was explored. ZrVTISi and ZrCrTiSi have a total magnetic moment of \(1 \mu_B\) and \(0 \mu_B\) per formula unit respectively, and it obeys the Slater–Pauling rule: \(\mu_T = 18 - Z_T\) (\(\mu_T\) is the total magnetic moment per unit cell and \(Z_T\) is the valence concentration). The computed elastic constants \(C_{11}\), \(C_{12}\), and \(C_{44}\) are all positive and follow the Born criteria, which confirmed that these Heusler compounds are mechanically stable.

Sobre autores

F. Besahraoui

Laboratory of Electronics, Computing and Applied Mathematics (LECAM), Faculty of Sciences and Technology, Tissemsilt University

Email: email@example.com
Tissemsilt, Algeria

F. Dahmane

Laboratory of Modeling and Simulation of Magnetic Properties of Hetero-Structures (LPMH), Faculty of Sciences and Technology, Tissemsilt University; Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Département de Technologie, Universite de Mascara

Email: fethallah05@gmail.com
Tissemsilt, Algeria; Mascara, Algeria

Bibliografia

  1. H. Tashpour and M. A. Vesaghi, Phys. Lett. 94(24), 242103 (2009).
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Moln´ar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294(5546), 1488 (2001).
  3. F. Dahmane, A. Tadjer, B. Doumi, D. Mesri, H. Aourag, and A. Sayede, Materials Science in Semiconductor Processing 21, 66 (2014).
  4. F. Dahmane, A. Tadjer, B. Doumi, D. Mesri, and H. Aourag, Journal of Superconductivity and Novel Magnetism 26(12), 3339 (2013).
  5. L. Bainsla, A. K. Yadav, Y. Venkateswara, S. N. Jha, D. Bhattacharyya, and K. G. Suresh, J. Alloys Compd. 651, 509 (2015).
  6. T. Graf, C. Felser, and S. S. P. Parkin, Progress in Solid State Chemistry 39(1), 1 (2011).
  7. Z. H. Liu, M. Zhang, W. Q. Wang, W. H. Wang, J. L. Chen, G. H. Wu, F. B. Meng, H. Y. Liu, B. D. Liu, J. P. Qu, and Y. X. Li, J. Appl. Phys. 92(9), 5006 (2002).
  8. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An augmented plane wave+ local orbitals program for calculating crystal properties, ed. by K. Schwarz, Vienna University of Technology, Austria (2001).
  9. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
  10. F. Tran and P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009).
  11. F. D. Murnaghan, Proceedings of the National Academy of Sciences 30(9), 244 (1944).
  12. J. C. Slater, Phys. Rev. 49(12), 931 (1936).
  13. L. Pauling, Phys. Rev. 54(11), 899 (1938).
  14. M. A. Ghebouli, T. Chihi, F. Dahmane, B. Ghebouli, M. Fatmi, T. Seddik, A. Abdiche, and R. Khenata, Chin. J. Phys. 56(4), 1515 (2018).
  15. W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), Nachdruck der ersten Aufl., ed. by J. W. Edwards, B. G. Teubner, Leipzig, Berlin (1928).
  16. A. Reuss, ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik 9(1), 49 (1929).
  17. R. Hill, Section A 65(5), 349 (1952).
  18. F. Semari, R. Boulechfar, F. Dahmane, A. Abdiche, R. Ahmed, S. H. Naqib, A. Bouhemadou, R. Khenata, and X.T. Wang, Inorganic Chemistry Communications 122, 108304 (2020).
  19. D. G. Pettifor, Materials Science and Technology 8(4), 345 (1992).
  20. J. H. Westbrook and H. Conrad, The Science of hardness testing and its research applications, ed. by H. Conrad, Published by American Society for Metals, Metals Park, Ohio (1973).
  21. I. N. Frantsevich, Elastic constants and elastic moduli of metals and insulators, Reference book, Naukova Dumka, Kiev (1982).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025