Ab initio issledovaniya izobar-analogovykh sostoyaniy legkikh yader kak perspektivnyy metod obogashcheniya i testirovaniya spektroskopicheskikh dannykh

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

На базе ab initio подхода – модели оболочек без инертного кора – разработан метод анализа спектров изобар-аналоговых мультиплетов ядер. Исследованы дублеты пятинуклонных резонансных состояний 5He–5Li с E* ≤ 30 МэВ, J ≤ 5/2 и T = 1/2. Для всех табличных уровней этих ядер найдены соответствующие им теоретически рассчитанные уровни. За счет использования результатов расчетов разностей энергий связи изобар-аналоговых пар и их сравнительного анализа с экспериментальными данными существенно расширен список надежно установленных уровней ядер 5He и 5Li, а также доказана необходимость внесения поправок в таблицы спектроскопических данных.

About the authors

D. M Rodkin

Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына МГУ имени М. В. Ломоносова; Московский физико-технический институт (государственный университет)

Email: rodkindm92@gmail.com
Москва, Россия; Долгопрудный, Россия

Yu. M Chuvil'skiy

Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына МГУ имени М. В. Ломоносова

Москва, Россия

References

  1. P. Navratil, S. Quaglioni, I. Stetcu, and B. Barrett, J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009).
  2. S. E. Koonin, D. J. Deand, and K. Langanke, Phys. Rep. 278, 1 (1997).
  3. T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer, and J. P. Vary, Phys. Rev. C 76, 014315 (2007).
  4. A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, and C. Bahri, Phys. Lett. B 727, 511 (2013).
  5. R. Roth, Phys. Rev. C 79, 064324 (2009).
  6. G. Papadimitriou, J. Rotureau, N. Michel, M. P. Loszajczak, and B. R. Barrett, Phys. Rev. C 88, 044318 (2013).
  7. Z. H. Sun, Q. Wu, Z. H. Zhao, B. S. Hu, S. J. Dai, and F. R. Xu, Phys. Lett. B 769, 227 (2017).
  8. G. Papadimitriou, B. R. Barrett, J. Rotureau, N. Michel, and M. Ploszajczak, EPJ Web of Conferences 66, 026006 (2014).
  9. C. Pieper and R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001).
  10. B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
  11. R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R. Pandharipande, Phys. Rev. C 62, 014001 (2000).
  12. H. Kummela, K. H. Luhrman, and J. G. Zabolitzky, Phys. Rep. 36, 1 (1978).
  13. M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N. Nicholson, Phys. Rev. A 84, 043644 (2011).
  14. M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N. Nicholson, Phys. Rev. A 87, 023615 (2013).
  15. K. Orginos, A. Parreno, M. J. Savage, S. R. Beane, E. Chang, W. Detmold, Phys. Rev. D 92, 114512 (2015).
  16. A. M. Shirokov, I. J. Shin, Y. Kim, M. Sosonkina, P. Maris, and J. P. Vary, Phys. Lett. B 761, 87 (2016).
  17. R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
  18. D. R. Entem and R. Machleidt, Phys. Rev. C 66, 014002 (2002).
  19. A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber, Phys. Lett. B 644, 33 (2007).
  20. D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
  21. S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001 (2007).
  22. A. Shirokov, A. Mazur, I. Mazur, E. Mazur, I. Shin, Y. Kim, L. Blokhintsev, and J. Vary, Phys. Rev. C 98, 044624 (2018).
  23. D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M. Hofmann, J. H. Kelley, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 708, 3 (2002).
  24. G. F. Filippov and I. P. Okhrimenko, Sov. J. Nucl. Phys. 32, 480 (1980).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences