IR magnetotransmission in double NdBaMn2O6 manganite with different degrees of ordering in A-position

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structural, magnetic, and optical properties of double manganites NdBaMn2O6 have been studied depending on the degree of ordering of Nd and Ba atoms in the A-position. Analysis of temperature dependences of light transmission shows the changes of charge carrier subsystem in vicinity of structural and magnetic phase transitions. When the metal-insulator transition occurs the effect of light magnetotransmission near Curie temperature was found.

Texto integral

Acesso é fechado

Sobre autores

E. Mostovshchikova

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: mostovsikova@imp.uran.ru
Rússia, Ekaterinburg, 620108

E. Sterkhov

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
Rússia, Ekaterinburg, 620016

S. Pryanichnikov

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
Rússia, Ekaterinburg, 620016

S. Titova

Institute of Metallurgy of Ural Branch of Russian Academy of Sciences

Email: mostovsikova@imp.uran.ru
Rússia, Ekaterinburg, 620016

Bibliografia

  1. Trukhanov S.V., Troyanchuk I.O., Hervieu M. et al. // Phys. Rev. B. 2002. V. 66. P. 184424.
  2. Nakajima T., Yoshizawa H., Ueda Y. // J. Phys. Soc. Japan. 2004. V. 73. P. 2283.
  3. Subías G., Blasco J., Cuartero V. et al. // Phys. Rev. B. 2023. V. 107. Art. No. 165133.
  4. Gan’shina E., Loshkareva N., Sukhorukov Yu. et al. // JMMM. 2006. V. 300. P. 62.
  5. Yamada S., Abe N., Sagayama H. et al. // Phys. Rev. Lett. 2019. V. 123. P. 126602.
  6. Троянчук И.О., Труханов С.В., Шимчак Г. // Кристаллография. 2002. Т. 4. С. 716; Troyanchuk I.O., Trukhanov S.V., Szymczak G. // Crystallography Rep. 2002. V. 47. P. 658.
  7. Aliev A.M., Gamzatov A.G., Kalitka V.S., Kaul A.R. // Solid State Commun. 2011. V. 151. P. 1820.
  8. Zhang Q., Guillou F., Wahl A. et al. // Appl. Phys. Lett. 2010. V. 96. P. 242506.
  9. Sagayama H., Toyoda S., Sugimoto K. et al. // Phys. Rev. B. 2014. V. 90. Art. No. 241113(R).
  10. Afroze S., Karim A.H., Cheok Q. et al. // Front. Energy. 2019. V. 13. P. 770.
  11. Юрасов А.Н., Борискина Ю.В., Ганьшина Е.А. и др. // ФТТ. 2007. Т. 49. С. 1066; Yurasov A.N., Boriskina Yu.V., Gan’shina E.A. et al. // Phys. Solid State. 2007. V. 49. P. 1121.
  12. Сухоруков Ю.П., Лошкарева Н.Н., Телегин А.В. и др. // Письма в ЖТФ. 2003. Т. 29. С. 55; Sukhorukov Yu.P., Loshkareva N.N., Telegin A.V. et al. // Tech. Phys. Lett. 2003. V. 29. 2003. P. 904.
  13. Mostovshchikova E.V., Loshkareva N.N., Telegin A.V. et al. // J. Appl. Phys. 2013. V.113. Art. No. 043503.
  14. Mostovshchikova E.V., Sterkhov E.V., Naumov S.V. et al. // JMMM. 2021. V. 538. Art. No. 168247.
  15. Khatuna A., Aicha P., Schoekel A. et al. // JMMM. 2023. V. 568. Art. No. 170367.
  16. Titova S.G., Sterkhov E.V., Uporov S.A. // J. Supercond. Novel Magn. 2020. V. 33. Art. No. 1899.
  17. Larson A.C., Von Dreele R.B. GSAS – General Structure Analysis System LANSCE MS-H805. NM 87545. Los Alamos: Los Alamos National Laboratory, 1986.
  18. Akahoshi D., Okimoto Y., Kubota M. et al. // Phys. Rev. B. 2004. V. 70. Art. No. 064418.
  19. Мостовщикова Е.В., Стерхов Е.В., Пыжьянов Я.Я., Титова С.Г. // ЖЭТФ. 2023. Т. 163. С. 58; Mostovshchikova E.V., Sterkhov E.V., Pyzhyanov Ya. Ya., Titova S.G. // J. Exp. Theor. Phys. 2023. V. 136. P. 46.
  20. Sterkhov E.V., Chtchelkatchev N.M., Mostovshchikova E.V. et al. // J. Alloys. Compounds. 2021. V. 892. Art. No. 162034.
  21. Mero R.D., Ogawa K., Yamada S. et al. // Sci. Reports. 2019. V. 9. Art. No. 18164.
  22. Yamada S., Sagayama H., Higuchi K. et al. // Phys. Rev. B. 2017. V. 95. Art. No. 035101.
  23. Сухоруков Ю.П., Лошкарева Н.Н., Ганьшина Е.А. и др. // ФТТ. 2004. Т. 46. С. 1203; Sukhorukov Yu.P., Loshkareva N.N., Gan’shina E.A. et al. // Phys. Solid State. 2004. V. 46. P. 1241.
  24. Loshkareva N.N., Mostovshchikova E.V., Korolyov A.V. et al. // JMMM. 2013. V. 341. P. 49.
  25. Loshkareva N.N., Gorbunov D.I., Andreev A.V. et al. // J. Alloys Compounds. 2013. V. 553. P. 199.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffractograms of NdBaMn2O6 manganites at room temperature. Arrows indicate BaMnO3 peaks. The inset shows the low-angle part of the diffractogram for Nd-o.

Baixar (105KB)
3. Fig. 2. Temperature dependences of the lattice parameters of manganite Nd-o (a), Nd-m (b). Light symbols correspond to the high-temperature phase, dark symbols to the low-temperature phase.

Baixar (163KB)
4. Fig. 3. Temperature dependences of magnetization of NdBaMn2O6 manganites in a field of 100 Oe (a). Light symbols correspond to the FC mode, dark symbols – to the ZFC mode. The inset shows the high-temperature peak for Nd-o on an enlarged scale. Field dependences of magnetization of Nd-m at different temperatures (b).

Baixar (266KB)
5. Fig. 4. Temperature dependences of light transmission, normalized to transmission at 350 K, for Nd-o (a, b), Nd-m (c) and Nd-l (d), measured at different energies.

Baixar (399KB)
6. Fig. 5. Temperature dependences of the light magnetotransmittance of Nd-m (a), Nd-l (b) manganite samples in a magnetic field of 8 kOe, measured at different energies. The inset shows the dependence of the magnetotransmittance on the energy of electromagnetic radiation.

Baixar (309KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024