Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.

Full Text

Restricted Access

About the authors

V. V. Savin

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children

Author for correspondence.
Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041; Ushakovo, 238322

M. A. Keruchenko

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000

P. A. Ershov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

P. A. Vorontsov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

A. A. Ignatov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

V. V. Rodionova

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

References

  1. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
  2. Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
  3. Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
  4. Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
  5. Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
  6. Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
  7. Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
  8. Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
  9. Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
  10. Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
  11. Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scanning electron microscope photographs of PVDF/PZT composites with PZT content of 0 (a), 5 (b), 10 (c), 20 (d), and 30% (d).

Download (1MB)
3. Fig. 2. X-ray diffraction patterns of PVDF/PZT composites.

Download (164KB)
4. Fig. 3. Graph of the dependence of transverse stress s in the composite on the relative elongation of the sample ε.

Download (182KB)
5. Fig. 4. Schematic representation of the setup for measuring the d33 constant using the quasi-static method.

Download (57KB)
6. Fig. 5. Graph of the dependence of the constant d33 on the percentage content of PZT particles in the composite.

Download (89KB)

Copyright (c) 2024 Russian Academy of Sciences