To the theory of remagnetization kinetics of magnetic composites

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Results of theoretical study of kinetics of the remagnetization of an ensemble of interacting ferromagnetic particles immobilized in a host non -magnetic medium are presented. The results show that the influence of interparticle interaction on the remagnetization is determined by the amplitude of the applied alternating field: it slows down this process in a weak field and accelerates it in a strong field. The interaction of particles increases both components of the complex magnetic susceptibility of the composite.

Full Text

Restricted Access

About the authors

A. Y. Zubarev

Ural Federal University

Author for correspondence.
Email: A.J.Zubarev@urfu.ru
Russian Federation, Ekaterinburg, 620000

L. Y. Iskakova

Ural Federal University

Email: A.J.Zubarev@urfu.ru
Russian Federation, Ekaterinburg, 620000

References

  1. Boczkowska A., Awietjan S.F. // Mater. Sci. Forum. 2010. V. 636–637. P. 766.
  2. Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. // PLoS ONE. 2015. V. 10. No. 1. Art. No. e0133878.
  3. Bira N., Dhagat P., Davidson J.R.// Front. Robot. AI. 2020. V. 7. Art. No. 588391.
  4. Kurlyandskaya G.V., Blyakhman F.A., Makarova E.B. et al. // AIP Advances. 2020. V. 10. P. 12512.
  5. Rajan A., Sahu N.K. // J. Nanopart. Res. 2020. V. 22. P. 319.
  6. Vilas-Boas V. // Molecules. 2020. V. 25. P. 2874
  7. Lingbing Li. // In: Handbook of materials for nanomedicine. eBook, 2020.
  8. Chung H-J., Parsons A, Zheng L. // Adv. Intell. Syst. 2021. V. 3. Art. No. 2000186.
  9. Kaewruethai T, Laomeephol C., Pan Y., Luckanagul J. // Gels. 2021. V. 7. P. 228.
  10. Sung B., Kim M-H., Abelmann L. // Bioeng. Transl. Med. 2021. V. 6. Art. No. e10190.
  11. Imran M., Affandi A.M., Alam M.M. et al. // Nanotechnology. 2021. V. 32. No. 42. Art. No. 422001
  12. Naghdi M., Ghovvati M., Rabiee N. et al. //Adv. Colloid Interface Sci. 2022. V. 308. Art. No. 102771.
  13. Socoliuc V., Avdeev M.V., Kuncser V. et al. // Nanoscale. 2022. V. 14. P. 4786.
  14. Schneider M., Martín M., Otarola J. et al. // Pharmaceutics. 2022. V. 14. P. 204.
  15. Rosensweig R.E. // J. Magn. Magn. Mater. 2002. V. 252. P. 370.
  16. Poperechny I.S., Raikher Yu.L., Stepanov V.I. // Phys. Rev. B. 2010. V. 82. Art. No. 174423.
  17. Engelmann U., Buhl E.M., Baumann M. et al. // Curr. Dir. Biomed. Eng. 2017. V. 3. P. 457.
  18. Coral D.F., Zélis P.M., Marciello M. et al. // Langmuir. 2016. V. 32. No. 5. P. 1201.
  19. Branquinho L.C., Carriao M.S., Costa A.S. et al. // Sci. Reports. 2013. V. 3. P. 2887.
  20. Mehdaoui B., Tan R.P., Meffre A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 174419.
  21. Serantes D., Baldomir D., Martinez-Boubeta C. et al. // J. Appl. Phys. 2010. V. 108. Art. No. 073918.
  22. Valdés D.P., Lima E., Zysler J., De Biasi E. // Phys. Rev. Appl. 2020. V. 14. Art. No. 014023.
  23. Landi G.T. // Phys. Rev. B. 2014. V. 89. Art. No. 014403.
  24. Zubarev A. Yu. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
  25. Ambarov A.V., Zverev Vl.S., Elfimova E.A. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 166010.
  26. Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
  27. Perigo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 041302.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of two interacting particles. Solid and dashed arrows denote unit vectors and , respectively. Azimuth angles φ1,2 are not shown for brevity.

Download (31KB)
3. Fig. 2. Relaxation time τ0(α) of the magnetic moment of a single particle as a function of the constant dimensionless magnetic field h for two values ​​of the angle α (numbers near the curves) between the field and the easy magnetization axis of the particle. The dimensionless energy of magnetic anisotropy of the particle is σ=14.

Download (35KB)
4. Fig. 3. Effective relaxation times T 0(h, t) (dashed line) and T(h, t) (solid line) of non-interacting and interacting particles, respectively, as functions of time t when the dimensionless magnetic field h changes from 0 to 3. σ = 14, λ = 8, Ф = 0.05

Download (41KB)
5. Fig. 4. The ratio of the effective relaxation time T for a particle interacting with another particle to the relaxation time of a single particle at h → 0. System parameters: σ = 14, λ = 8, Ф = 0.05.

Download (33KB)
6. Fig. 5. Real (1) and imaginary (2) components of the complex susceptibility of single (X0, dashed lines) and interacting (X, solid lines) particles as functions of the frequency of the oscillating field. The system parameters are σ = 14, λ = 8, Ф = 0.05.

Download (48KB)

Copyright (c) 2024 Russian Academy of Sciences