Heat and particle transport simulation in COMPASS and T-10 tokamaks with the canonical profile transport model

Cover Page

Cite item

Full Text

Abstract

The results of heat and particle transport simulations for ohmic plasma in the T-10 tokamak with a circular limiter and for D-shaped plasma in the COMPASS tokamak with a divertor are presented. In addition, the H-mode with ohmic heating and with additional heating by the neutral beam injection (NBI) in the COMPASS was simulated. The simulations were carried out with the Canonical profile transport model (CPTM) using the ASTRA code. The obtained electron temperature and density profiles agree with the measured ones with standard deviations within the experimental accuracy of 10–15%. The calculations demonstrated very similar density profiles in the H-mode both with the ohmic and with additional NBI heating. The electron temperature profiles in the H-mode with additional heating have higher pedestals than in the ohmic H-mode, that agree with the measurements. The comparison showed that the ohmic regimes in COMPASS and T-10 can be described by the same stiffness coefficients in the heat and particle transport equations.

Full Text

Restricted Access

About the authors

A. V. Danilov

National Research Centre “Kurchatov Institute”

Email: danilov_AV@nrcki.ru
Russian Federation, Moscow, 123182

Yu. N. Dnestrovskij

National Research Centre “Kurchatov Institute”

Email: nrcki@nrcki.ru
Russian Federation, Moscow, 123182

A. V. Melnikov

National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPHI; Moscow Institute of Physics and Technology

Email: nrcki@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 115409; Dolgoprudny, 141701

L. G. Eliseev

National Research Centre “Kurchatov Institute”

Email: nrcki@nrcki.ru
Russian Federation, Moscow, 123182

S. E. Lysenko

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182

S. V. Cherkasov

National Research Centre “Kurchatov Institute”

Email: nrcki@nrcki.ru
Russian Federation, Moscow, 123182

References

  1. Coppi B. // Plasma Phys. Control. Fusion. 1980. V. 5. P. 261.
  2. Hsu J.Y., Chu M.S. // Phys. Fluids. 1987. V. 30. P. 1221.
  3. Кадомцев Б.Б. // Физика плазмы. 1987. Т. 13. С. 771.//Kadomtsev B.B. // Sov. J. Plasma Phys. 1987. V. 13. P. 443.
  4. Dnestrovskij Yu.N., Pereverzev G.V. // Plasma Phys. Control. Fusion. 1988. V. 30. P. 1417.
  5. Dnestrovskij Yu.N., Berezovskij E.L., Lysenko S.E., Pivinskij A.A. and Tarasyan K.N. // Nucl. Fusion. 1991. V. 31. P. 1877.
  6. Dnestrovskij Yu.N., Razumova K.A., Donné A.J.H., Hogeweij G.M.D., Andreev V.F., Bel’bas I.S., Cherkasov S.V., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Spakman G.W., and Walsh M. // Nucl. Fusion. 2006. V. 46. P. 953.
  7. Melnikov A.V., Eliseev L.G., Pastor I., Herranz J., Hidalgo C., Fujisawa A., Minami Т., Razumova K.A., Dnestrovskij Yu.N., Lysenko S.E., Spakman G.W. and Walsh M. Pressure profile shape constancy in L-mode stellarator plasma. Proc. 34th EPS Conference on plasma physics, 2–6 July 2007, Warshaw, ECA. V. 31F. P-2.060. http://ocs.ciemat.es/EPS2007PAP/pdf/P2.060.pdf
  8. Dnestrovskij Yu.N., Melnikov A.V., Pustovitov V.D. // Plasma Phys. Control. Fusion. 2009. V. 51. P. 015010.
  9. Diamond P.H., Itoh S.-I., Itoh K., Hahm T.S. // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35–R161.
  10. Melnikov A.V. // Nature Phys. 2016. V. 12. P. 386.
  11. Саранча Г.А., Елисеев Л.Г., Мельников А.В., Хабанов Ф.О., Харчев Н.К. // Письма в ЖЭТФ. 2022. Т. 116. № 2. С. 96–102.//Sarancha G.A., Eliseev L.G., Khabanov Ph.O., Kharchev N.K., Melnikov A.V. // JETP Letters. 2022. V. 116. P. 98–104. doi: 10.1134/S0021364022601178.
  12. Vershkov V.A., Shelukhin D.A., Subbotin G.F., Dnestrovskij Yu.N., Danilov A.V., Melnikov A.V., Eliseev L.G., Maltsev S.G., Gorbunov E.P., Sergeev D.S. et al. // Nucl. Fusion. 2015. V. 55. P. 063014.
  13. Andreev V.F., Borschegovskij A.A., Chistyakov V.V., Dnestrovskij Yu.N., Gorbunov E.P., Kasyanova N.V., Lysenko S.E., Melnikov A.V., Myalton T.B., Roy I.N. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 055008.
  14. Melnikov A.V., Vershkov V.A., Eliseev L.G., Grashin S.A., Gudozhnik A.V., Krupnik L.I., Lysenko S.E., Mavrin V.A., Perfilov S.V., Shelukhin D.A., Soldatov S.V., Ufimtsev M.V., Urazbaev A.O., Van Oost G. and Zimeleva L.G. // Plasma Phys. Control. Fusion. 2006. V. 48. P. S87.
  15. Seidl J., Krbec J., Hron M., Adamek J., Hidalgo C., Markovic T., Melnikov A.V., Stockel J., Weinzettl V., Aftanas M., Bilkova P., Bogar O., Bohm P., Eliseev L.G., et al. // Nucl. Fusion. 2017. V. 57. P. 126048.
  16. Melnikov A.V., Krupnik L.I., Eliseev L.G., Barcala J.M., Bravo A., Chmyga A.A., Deshko G.N., Drabinskij M.A., Hidalgo C., Khabanov P.O., Khrebtov S.M., Kharchev N.K., Komarov A.D., Kozachek A.S., Lopez J., Lysenko S.E., Martin G., Molinero A., de Pablos J.L., Soleto A., Ufimtsev M.V., Zenin V.N., Zhezhera A.I. // Nucl. Fusion. 2017. V. 57. P. 072004.
  17. Kim C.B. // J. Plasma Phys. 2020. V. 86. P. 905860315.
  18. Белокуров А.А., Абдуллина Г.И., Аскинази Л.Г., Буланин В.В., Жубр Н.А., Корнев В.А., Крикунов С.В., Лебедев С.В., Петров А.В., Разуменко Д.В. // Письма в ЖТФ. 2019. Т. 45. № 15. С. 42–46.//Belokurov A.A., Abdullina G.I., Askinazi L.G., Bulanin V.V., Zhubr N.A., Kornev V.A., Krikunov S.V., Lebedev S.V., Petrov A.V., Razumenko D.V., Tukachinsky A.S., and Yashin A.Yu. // Technical Phys. Lett. 2019. V. 45. P. 783.
  19. Gurchenko A.D. Gusakov E.Z., Niskala P., Altukhov A.B., Esipov L.A., Kiviniemi T.P., Kouprienko D.V., Kantor M.Yu., Lashkul S.I., Leerink S. // EPL. 2015. V. 110. P. 55001.
  20. Pereverzev G.V., Yushmanov P.N. ASTRA: Automated System for Transport Analysis in a Tokamak // Preprint IPP 5/98. Garching, Germany, 2002.
  21. NUBEAM NTCC Module Documentation https://w3.pppl.gov/~pshare/help/nubeam.htm
  22. Dnestrovskij Yu.N., Connor J.W., Cherkasov S.V., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Roach C.M. and Walsh M. // Plasma Phys. Control. Fusion. 2007. V. 49. P. 1477.
  23. Dnestrovskij Yu.N. Self-Organization of Hot Plasmas // Springer International Publishing, Switzerland, 2015.//Днестровский Ю.Н. Самоорганизация горячей плазмы. М.: НИЦ “Курчатовский институт”, 2013. 172 с.
  24. Danilov A.V., Dnestrovskij Yu.N., Melnikov A.V., Cherkasov S.V., Eliseev L.G., Dnestrovskij A.Yu., Lysenko S.E., Subbotin G.F., Vershkov V.A., Havlíček J., Urban J., Stöckel J., Bílková P., Böhm P., Šos M., Hron M., Komm M., Pánek R. et al. Heat and particle transport simulation in COMPASS and T-10 with Canonical Profiles Transport Model // Proc. 45th EPS Conf. on Plasma Physics, 2–6 July 2018, Prague, Czech Republic, ECA. V. 42A. P5.1088. http://ocs.ciemat.es/EPS2018PAP/pdf/P5.1088.pdf
  25. Днестровский Ю.Н., Грязневич М.П., Днестровский А.Ю., Коннор Дж.В., Лысенко С.Е., Тарасян К.Н., Черкасов С.В., Уолш М.Дж. // Физика плазмы. 2000. Т. 26. С. 579–589.//Dnestrovskij Yu.N., Gryaznevich M.P., Dnestrovskij A.Yu., Connor J.W., Lysenko S.E., Tarasyan K.N., Cherkasov S.V., and Walsh M.J. // Plasma Phys. Rep. 2000. V. 26. P. 539.
  26. Kurskiev G.S., Miroshnikov I.V., Sakharov N.V., Gusev V.K., Petrov Yu.V., Minaev V.B., Balachenkov I.M., Bakharev N.N., Chernyshev F.V., Goryainov V. Yu. et al. // Nucl. Fusion. 2022. V. 62. P. 104002.
  27. Касьянова Н.В., Днестровский Ю.Н., Мельников А.В. // Физика плазмы. 2024. Т. 50. C. 283.//Kasyanova N.V., Dnestrovskij Yu.N., Melnikov A.V. // Plasma Phys. Rep. 2024. V. 50. P. 322. doi: 10.1134/S1063780X24600208.
  28. Melnikov A.V., Sushkov A.V., Belov A.M., Dnestrovskij Yu.N., Eliseev L.G., Ivanov D.P., Kirneva N.A., Korobov K.V., Krupin V.A., Lysenko S.E., Mukhovatov V.S., Mustafin N.A. et al. // Fusion Eng. Design. 2015. V. 96–97. P. 306. http://www.sciencedirect.com/science/article/pii/S0920379615301095
  29. Леонов В.М. // ВАНТ. Сер. Термоядерный синтез. 2016. Т. 39. № 3. С. 73.
  30. Seidl J., Hron M., Adamek J., Vondracek P., Horacek J., Hidalgo C., Melnikov A., Eliseev L., Markovic T., Stöckel J., Basu D., Hacek P., Havlicek J., Imríšek M., Kovarik K., Weinzett V., Panek R. and COMPASS Team. Observation of geodesic acoustic mode-like oscillations on COMPASS // Proc. 42th EPS Conference on plasma physics, 22–26 June 2015, Lisbon, ECA, V. 39E. P-4.103. http://ocs.ciemat.es/EPS2015PAP/pdf/P4.103.pdf
  31. Markovic T., Melnikov A., Seidl J., Eliseev L, Havlicek J., Havranek A., Hron M., Imrisek M., Kovarik K., Mitosinkova K., Mlynar J., Naydenkova D., Panek R., Stokel J., Varju J., Weinzettl V. Alfvén-character oscillations in ohmic plasmas observed on the COMPASS tokamak // Proc. 44th EPS Conference on Plasma Physics, 26–30 June 2017, Belfast, ECA. V. 41F. P-5.140. http://ocs.ciemat.es/EPS2017PAP/pdf/P5.140.pdf
  32. Melnikov A.V., Markovic T., Eliseev L.G., Adámek J., Aftanas M., Bilkova P., Boehm P., Gryaznevich M., Imrisek M., Lysenko S.E., Medvedev S.Yu., Panek R., Peterka M., Seidl J., Stefanikova E., Stockel J., Weinzettl V. and the COMPASS team // Plasma Phys. Control. Fusion. 2015. V. 57. P. 065006.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Red lines – pulse #9286 of the COMPASS tokamak with an ohmic L–H junction, blue lines – pulse #13652 with additional heating by a neutral beam. (a) Plasma current (dashed lines), central chord density; (b) bypass voltage, output powers of neutral beams NBI1, NBI2; (c) Hα signal. The vertical dashed lines mark the moments of L–H transitions, the vertical dotted lines – the time moments selected for the simulation.

Download (51KB)
3. Fig. 2. Evolution of plasma current and average density along the central chord in pulse T-10 #61408. The vertical line marks the time moment selected for the simulation.

Download (16KB)
4. Fig. 3. Electron temperature (a) and plasma density (b) profiles in the ohmic phase of discharges in COMPASS (t = 1048 ms) and T-10 (t = 540 ms). Solid lines – calculations using TMCP, dashed lines – canonical temperature profiles normalized to Te(0), ▼ and – experiment.

Download (30KB)
5. Fig. 4. Neutral beam power absorbed in plasma by electrons Qnbe and ions Qnbi, total absorbed beam power Qnbtot – Qnbe + Qnbi and beam output power Qnbout in pulse #13652.

Download (21KB)
6. Fig. 5. Radial profiles of the beam power absorbed by the electron and ion components of the plasma, Pnbe, Pnbi for two moments of time at different density values ​​selected for comparison of the temperature and density profiles (see Fig. 1).

Download (15KB)
7. Fig. 6. Source of charged particles due to wall neutrals (solid line) and neutral beam (dashed line).

Download (13KB)
8. Fig. 7. Comparison of the calculated profiles of the plasma electron temperature and density with the Thomson scattering measurements in the Ohmic pulse and in the pulse with additional NBI heating. The solid lines refer to earlier and the dashed lines to later moments of time, marked by dotted vertical lines in Fig. 1.

Download (34KB)
9. Fig. 8. Comparison of the calculated values ​​of bypass voltage (a) and stored plasma energy (b) with the measurement results.

Download (34KB)

Copyright (c) 2024 Russian Academy of Sciences