Luminescence properties of heterometallic lanthanide complexes based on lithium β-diketonate bearing tert-butyl and acetal group

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nonsymmetrical lithium β-diketonate (LiL) containing tert-butyl and acetal substituents at the dicarbonyl cage has been synthesized for the first time and is structurally characterized (CIF file CCDC no. 2364039 (I)). The reactions of functional lithium β-diketonate with salts of trivalent rare-earth metals in methanol afford heterobinuclear complexes [(LnL3)(LiL)(MeOH)] (Ln = Eu, Gd, Tb). The structures of the complexes are characterized by X-ray diffraction (XRD) (CIF files CCDC nos. 2364040 (II), 2364041 (III), 2364042 (IV)).

全文:

受限制的访问

作者简介

Yu. Edilova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

Yu. Kudyakova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

P. Slepukhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg; Yekaterinburg

M. Valova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

V. Saloutin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg

D. Bazhin

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

编辑信件的主要联系方式.
Email: dnbazhin@gmail.com
俄罗斯联邦, Yekaterinburg; Yekaterinburg

参考

  1. Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283.
  2. Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531.
  3. Bünzli J.-C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  4. Saloutin V.I., Edilova Y.O., Kudyakova Y.S. et al. // Molecules. 2022. V 27. P. 7894.
  5. Biju S., Eom Y.K., Bünzli J.-C.G. et al. // J. Mater. Chem. C. 2013. V 1. P. 6935.
  6. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Eur. J. 2015. V. 21. P. 18354.
  7. Hasegawa Y., Tsuruoka S., Yoshida T. et al. // J. Phys. Chem. A. 2008. V.112. P. 803.
  8. Varaksina E.A., Taydakov I.V., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 196. P 161.
  9. Korshunov V.M., Kiskin M.A., Taydakov I.V. // J. Lumin. 2022. V. 251. P. 119235.
  10. Varaksina E.A., Kiskin M.A., Lyssenko K.A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 25748.
  11. Kudyakova Y.S., Bazhin D.N., Burgart Y.V. et al. // Mendeleev Commun. 2016. V. 26. P. 54.
  12. Metlina D.A., Metlin M.T., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 203. P. 546.
  13. Пугачев Д.Е., Кострюкова Т.С., Ивановская Н.Г. и др. // Журн. общ. химии. 2019. Т. 89. С. 779 (Pugachyov D.E., Kostryukova T.S., Ivanovskaya N.G. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 965). https://doi.org/10.1134/S0044460X19050160
  14. Sukhikh T.S., Kolybalov D.S., Pylova E.K. et al. // New J. Chem. 2019. V. 43. P. 9934.
  15. Melo S., Castro G.P., Gonçalves S.M.C. // Inorg. Chem. 2019. V. 58. P. 3265.
  16. Galán L.A., Reid B.L., Stagni S. et al. // Inorg. Chem. 2017. V. 56. P. 8975.
  17. Kang J.-S., Jeong Y.-K., Shim Y.S. et al. // J. Lumin. 2016. V. 178. P. 368.
  18. Reid B.L., Stagni S., Malicka J.M. et al. // Chem. Commun. 2014. V. 50. P. 11580.
  19. Biju S., Freire R.O., Eom Y.K. et al. // Inorg. Chem. 2014. V. 53. P. 8407.
  20. Smirnova K.A., Edilova Y.O., Kiskin M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. 9778.
  21. Bazhin D.N., Kudyakova Y.S., Bogomyakov A.S. et al. // Inorg. Chem. Front. 2019. V. 6. P. 40.
  22. Кудякова Ю.С., Слепухин П.А., Валова М.С. и др. // Коорд. химия. 2020. Т. 46. С. 485 (Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Russ. J. Coord. Chem. 2020.V. 46. P. 545). https://doi.org/10.1134/S1070328420070027
  23. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 523.
  24. Кудякова Ю.С., Слепухин П.А., Ганебных И.Н. и др. // Коорд. химия. 2022. Т. 47. С. 245 (Kudyakova Y.S., Slepukhin P.A., Ganebnykh I.N. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 280). https://doi.org/10.1134/S1070328421040059
  25. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // J. Mol. Struct. 2021. V. 1226. P. 129331.
  26. Бажин Д.Н., Кудякова Ю.С., Эдилова Ю.О. и др. // Изв. АН. Сер. хим. 2022. Т. 71. № 7. С. 1321 (Bazhin D.N., Kudyakova Y.S., Edilova Y.O. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1321). https://doi.org/10.1007/s11172-022-3539-6
  27. Krisyuk V.V., Urkasym Kyzy S., Rybalova T.V. et al. // J. Coord. Chem. 2018. V 71. P. 2194.
  28. Edilova Y.O., Osipova E.A., Slepukhin P.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14234.
  29. Binnemans K. // Coord. Chem. Rev. 2015. V. 295. P. 1.
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  31. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  32. Casanova D., Llunell M., Alemany P. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
  33. Llunell M., Casanova D., Cirera J. et al. SHAPE. Version 2.1. Barcelona (Spain): Electronic Structure Group Univ. de Barcelona, 2013.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Structures of acetal-containing diketonates.

下载 (18KB)
3. Scheme 2.

下载 (23KB)
4. Fig. 1. Molecular structure of lithium diketonate tetramer I.

下载 (96KB)
5. Fig. 2. Structure of lithium diketonate tetramer I, in which the ligand backbone is transparent for ease of perception.

下载 (109KB)
6. Scheme 3.

下载 (57KB)
7. Fig. 3. Molecular structure of complexes II–IV.

下载 (88KB)
8. Fig. 4. Organization of the bimetallic skeleton of compounds II–IV due to diketonate anions with acetal fragments.

下载 (91KB)
9. Fig. 5. Fragment of the crystal packing of complexes II‒IV. The ligands are transparent to simplify the perception of the arrangement of the heterometallic fragments of the molecules; the dotted line connects the lanthanide ions corresponding to the smallest intermolecular distance Ln…Ln.

下载 (149KB)
10. Fig. 6. Absorption and PL spectra of solid samples of complexes II and IV.

下载 (129KB)
11. Fig. 7. Absorption and phosphorescence spectra of microcrystalline samples of non-fluorinated complex III and the trifluoromethyl analogue [(GdLF3)(LiLF)(MeOH)].

下载 (144KB)
12. Fig. 8. Excitation spectra of solid samples of complexes II and IV.

下载 (120KB)

版权所有 © Российская академия наук, 2025