ON THE CONSTRUCTION OF A GRADIENT QUADRATIC OPTIMIZATION METHOD, OPTIMAL IN TERMS OF MINIMIZING THE DISTANCE TO THE EXACT SOLUTION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Quadratic optimization problems in Hilbert space often arise when solving ill-posed problems for differential equations. At the same time, the target value of the functional is known. In addition, the functional structure makes it possible to calculate the gradient by solving correct problems, which allows applying first-order methods. This article is devoted to the construction of the m-moment method of minimal errors, an effective method that minimizes the distance to an accurate solution. The convergence and optimality of the constructed method are proved, as well as the impossibility of uniform convergence of methods operating in Krylov subspaces. Numerical experiments are being conducted to demonstrate the effectiveness of applying the m-moment minimum error method to solving various incorrect problems: the initial boundary value problem for the Helmholtz equation, the retrospective Cauchy problem for the heat equation, and the inverse thermoacoustics problem. Куа.

作者简介

N. Pletnev

MIPT

Email: nikita_pletnev@list.ru
Dolgoprudny, Russia

参考

  1. Поляк Б.Т. Минимизация негладких функционалов // Ж. вычисл. матем. и матем. физ. 1969. Т. 9. № 3. С. 509–521.
  2. Devanathan N., Boyd S. Polyak minorant method for convex optimization. e-print, 2024. URL: https://arxiv.org/abs/2310.07922.
  3. Goujaud B., Taylor A., Dieuleveut A. Quadratic minimization: from conjugate gradient to an adaptive Heavy-ball method with Polyak step-sizes. e-print, 2022. URL: https://arxiv.org/abs/2210.06367.
  4. Kabanikhin S.I. Inverse and ill-posed problems: theory and applications. Berlin: Walter de Gruyter GmbH & Co, 2012. 459 p. ISBN 978-3-11-022400-9.
  5. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Физматлит, 2004. ISBN 5-9221-0266-4.
  6. Павлин Н.В., Двуреченский П.Е., Гасников А.В. Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца // Компьют. исслед. и моделирование. 2022. Т. 14. № 2. С. 417–444.
  7. Павлин Н.В., Матюхин В.В. О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики // Компьют. исслед. и моделирование. 2023. Т. 15. № 2. С. 301–316.
  8. Кабанихин С.Н., Шишленин М.А., Криворотько О.И. Оптимизационный метод решения обратной задачи термоакустики // Сиб. электрон. матем. изв. 2011. Т. 8. С. 263–292.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025