THE FLOW STRUCTURE NEAR THE LEADING EDGE OF A LIQUID LAYER SPREADING ALONG A SUPERHYDROPHOBIC SURFACE
- 作者: Ageev A.I1, Osiptsov A.N1
-
隶属关系:
- Institute of Mechanics, M.V. Lomonosov Moscow State University
- 期: 卷 65, 编号 5 (2025)
- 页面: 697-716
- 栏目: Mathematical physics
- URL: https://vestnik-pp.samgtu.ru/0044-4669/article/view/686927
- DOI: https://doi.org/10.31857/S0044466925050088
- EDN: https://elibrary.ru/IGITSX
- ID: 686927
如何引用文章
详细
Flows in the vicinity of the wetting front of a viscous liquid film spreading in a gravity field along inclined, vertical, and horizontal superhydrophobic surfaces (SHS) with a slip boundary condition (Navier condition) are considered.Within the framework of the Stokes film approximation with local allowance for the longitudinal pressure gradient and (or) surface tension, the method of matched asymptotic expansions is used to derive equations describing self-similar solutions for the film surface shape and the flow parameters in the vicinity of a moving wetting front on the SHS. For different surface inclination angles to the horizon, the effect of the slip coefficient on the film surface shape, the dimensions of the region where the longitudinal pressure gradient and (or) surface tension are significant, and the flow structure in this region is investigated based on asymptotic and numerical analysis.
作者简介
A. Ageev
Institute of Mechanics, M.V. Lomonosov Moscow State UniversityMoscow, Russia
A. Osiptsov
Institute of Mechanics, M.V. Lomonosov Moscow State University
Email: osiptsov@imec.msu.ru
Moscow, Russia
参考
- Rothstein J.R. Slip on superhydrophobic surfaces // Ann. Rev. Fluid Mech. 2010. V. 42. P. 89–109. https://doi.org/10.1146/annurev-fluid-121108-145558
- Lee C., Choi C.-H., Kim C.-J. Structured surfaces for a giant liquid slip // Phys. Rev. Lett. 2008. V. 101. P. 064501–064504. https://doi.org/10.1103/PhysRevLett.101.064501
- Moghadam S.G., Parsimehr H., Ehsani A. Multifunctional superhydrophobic surfaces// Adv. Colloid Interface Sci. 2021. V. 290. P. 102397–102411. https://doi.org/10.1016/j.cis.2021.102397
- Lin F., Wo K., Fan X., Wang W., Zou J. Directional transport of underwater bubbles on solid substrates: Principles and applications // ACS Appl. Mater. Interfaces. 2023. V. 15.№8. P. 10325–10340. https://doi.org/10.1021/acsami.2c21466
- Jokinen V., Kankuri E., Hoshian S., Franssila S., Ras R.H.A. Superhydrophobic blood-repellent surfaces // Adv. Materials. 2018. V. 30.№24. P. 1705104. https://doi.org/10.1002/adma.201705104
- Balasubramanian A., Miller A., Rediniotis O. Microstructured hydrophobic skin for hydrodynamic drag reduction // AIAA J. 2002. V. 42.№2. P. 411–414. https://doi.org/10.2514/1.9104
- Агеев А.И., Осипцов А.Н. Пульсирующее течение вязкой жидкости над каверной, содержащей сжимаемый газовый пузырек // Изв. РАН. Механика жидкости и газа. 2021.№6. C. 38–50. https://doi.org/10.31857/S0568528121060013
- Bazant M., Vinogradova O. Tensorial hydrodynamic slip // J. Fluid Mech. 2008. V. 613. P. 125–134. https://doi.org/10.1017/S002211200800356X
- Агеев А.И., Осипцов А.Н. Макро- и микрогидродинамика вязкой жидкости вблизи супергидрофобной поверхности // Коллоидный журнал. 2022. Т. 84.№4. С. 380–395. https://doi.org/10.31857/S0023291222040024
- Воинов О.В. Гидродинамика смачивания // Изв. АН СССР. Механика жидкости и газа. 1976.№5. С. 76–84.
- Dussan V.E.B. On the spreading of liquids on solid surfaces: static and dynamic contact lines // Ann. Rev. Fluid Mech. 1979. V. 11. P. 371–400. https://doi.org/10.1146/annurev.fl.11.010179.002103
- De Gennes P.G.,Wetting: statics and dynamics // Rev. Mod. Phys. 1985. V. 57.№3. P. 827–863. https://doi.org/10.1017/S0022112090001859
- Shikhmurzaev Y.D. Capillary flows with forming interfaces (1st Ed., Chapman and Hall, CRC, New York, 2007). 480 p.
- Huppert H.E. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface // J. Fluid Mech. 1982. V. 121. P. 43–58. https://doi.org/10.1017/S0022112082001797.
- Smith P.C. A similarity solution for slow viscous flow down an inclined plane // J. Fluid Mech. 1973. V. 58. № 2. P. 275–288. https://doi.org/10.1017/S0022112073002594
- Осипцов А.А. Трехмерные изотермические течения лавы по неосесимметричной конической поверхности // Изв. РАН. Механика жидкости и газа. 2006.№2. С. 31–45.
- Lister J.R. Viscous flows down an inclined plane from point and line sources // J. Fluid Mech. 1992. V. 242. P. 631–653. https://doi.org/10.1017/S0022112092002520
- Huppert H.E. Flow and instability of a viscous current down a slope // Nature. 1982. V. 300. P. 427–429. https://doi.org/10.1038/300427a0
- Lister J.R., Kerr R.C. The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface // J. Fluid Mech. 1989. V. 203. P. 215–249. https://doi.org/10.1017/S0022112089001448
- Moriarty J.A., Schwartz L.W., Tuck E.O. Unsteady spreading of thin liquid films with small surface tension // Phys. Fluids A. 1991. V. 3.№5. P. 733–742. https://doi.org/10.1063/1.858006
- Oron A., Davis S.H., Bankoff S.G. Long-scale evolution of thin liquid films // Rev. Modern Phys. 1997. V. 69.№3. P. 931–980. https://doi.org/10.1103/RevModPhys.69.931
- Craster R.V., Matar O.K. Dynamics and stability of thin liquid films // Rev. Modern Phys. 2009. V. 81. № 3. P. 1131–1198. https://doi.org/10.1103/RevModPhys.81.1131
- Smolka L.B., SeGall M. Fingering instability down the outside of a vertical cylinder// Phys. Fluids. 2011. V. 23. P. 092103–092124. https://doi.org/10.1063/1.3633530
- Chakrabarty S., Shen T.W.-H., Chosh S. Dynamics and stability of power-law film flowing down a slippery slope // Phys. Fluids. 2019. V. 31. P. 013102–013119. https://doi.org/10.1063/1.5078450
- Агеев А.И., Осипцов А.Н. Автомодельные режимы растекания тонкого слоя жидкости по супергидрофобной поверхности// Изв. РАН, Механика жидкости и газа. 2014.№3. С. 37–51.
- Aksenov A.V., Sudarikova A.D., Chicherin I.S. The surface tension effect on viscous liquid spreading along a superhydrophobic surface// IOP Conf. Ser.: J. of Phys. 2017. V. 788. P. 012003. https://doi.org/10.1088/1742-6596/788/1/012003
- Аксенов А.В., Сударикова А.Д., Чичерин И.С. Влияние поверхностного натяжения на растекание вязкой жидкости вдоль супергидрофобной поверхности. II. Осесимметричное движение // Вестник НИИЯУ “МИФИ”. 2017. Т. 6.№2. С. 117–125.
- Ma C., Liu J., Liu Y. Contact line instability of gravity driven thin films flowing down an inclined plane with wall slippage // Chem. Eng. Sci. 2020. V. 214. P. 115418. https://doi.org/10.1016/j.ces.2019.115418
- Ma C., Liu J., Shao M., Li B. , Li L., Xue Z. Effect of slip on the contact-line instability of a thin liquid film flowing down a cylinder // Phys. Rev. E. 2020. V. 101. P. 053108. https://doi.org/10.1103/PhysRevE.101.053108
- Dragoni M., Borsari I., Tallarico A. A model for the shape of lava flow fronts // J. Geophys. Res. 2005. V. 110. P. B09203. https://doi.org/10.1029/2004JB003523
- Ludviksson V., Lightfoot E.N. Deformation of advancing menisci // AIChE Journal. 1968. V. 14. № 4. P. 674–677. https://doi.org/10.1002/aic.690140433
- Tuck E.O., Schwartz L.W. A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows // SIAM Rev. 1990. V. 32.№3. P. 453–469. https://doi.org/10.1137/1032079
- Munch A., Wagner B. Contact-line instability of dewetting thin films // Physica D. 2005. V 209. P. 178–190. https://doi.org/10.1016/j.physd.2005.06.027
- Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. 432 с.
补充文件
