Characteristic parameters of unsaturated fatty acid residues upon liquid chromatography of lipids in media with silver ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of liquid chromatography of a complex mixture of unsaturated lipid molecules as the basis of the hydrophobic matrix of biomembranes are summarized. The data of relative retention of such lipids, which included residues of the most important fatty acids, allowed calculating the most characteristic general parameters that satisfactorily determine their behavior when silver salt is introduced into a planar or column liquid chromatographic system in order to drastically increase the selectivity of separation of unsaturated lipid molecules from each other. A variant of quantitative estimation of the relationship between the level of selectivity of separation of particular molecules of natural lipids from each other and the proposed parameters of their constituent fatty acid residues, which are calculated on the basis of variations in the chemical potential of such molecules when silver appears in this system, is proposed.

全文:

受限制的访问

作者简介

V. Pchelkin

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bas1953@mail.ru
俄罗斯联邦, Moscow

参考

  1. Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. // J. Chromatogr. A. 2019. V. 1590. P. 58. doi: 10.1016/j.chroma.2019.01.047
  2. Lu H., Zhu H., Dong H., et al. // J. Chromatogr. A. 2019. V. 1613. № 460660. P. 1–7 doi: 10.1016/j.chroma.2019.460660
  3. Huang S., Qui R., Fang Z., et al. // Anal. Chem. 2022. V. 94. P. 13710. doi: 10.1021/acs.analchem.2c01627
  4. Ullah Q. // J. Planar Chromatogr. Modern TLC. 2020. V. 33. P. 329. doi: 10.1007/s00764-020-00048-7
  5. Yoon J., Choi E., Min K. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10103. doi: 10.1021/acs.jpca.1c05292
  6. Hamieh T. // J. Chromatogr. Sci. 2022. V. 60. № 2. P. 126. doi: 10.1093/chromsci/bmab066
  7. Petersen M.L., Hirsch J. // J. Lipid. Res. 1959. V. 1. P. 152.
  8. Ren Q.H., Rybicki M., Sauer J. // J. Phys. Chem. C. 2020. V. 124. № 18. P. 10067. doi: 10.1021/acs.jpcc.0c003061
  9. Vysotsky Y.B., Kartashynska E.S., Vollhardt D., et al. // J. Phys. Chem. C. 2020. V. 124. № 25. P. 13809. doi: 10.1021/acs.jpcc.0c03785
  10. Leasor C., Chen K.-H., Closson T., Li Z. // J. Phys. Chem. C. 2019. V. 123. № 22. P. 13600. doi: 10.1021/acs.jpcc.9b01705
  11. Nikolova-Damyanova B., Christie W.W., Herslöf B.G. // J. Chromatogr. A. 1993. V. 653. № 1. P. 15.
  12. Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. // Lipids. 2016. V. 51. № 12. P. 1427. doi: 10.1007/s11745-016-4207-0
  13. Dabrowska M., Sokalska K., Gumulka P., et al. // JPC-J. Planar Chromatogr. –Modern TLC. 2019. V. 32. № 1. P. 13. doi: 10.1556/1006.2019.32.1.2
  14. Пчелкин В.П., Верещагин А.Г. // Докл. АН СССР. 1991. Т. 318. № 2. С. 473.
  15. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1991. V. 538. № 2. P. 373.
  16. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1992. V. 603. P. 213.
  17. Pchelkin V.P. // Russ. J. Phys. Chem. 2000. V. 74. P. 625.
  18. Пчёлкин В.П. // Журн. физ. химии. 2003. Т. 77. № 9. С. 1652.
  19. Пчёлкин В.П. // Журн. физ. химии. 2016. V. 90. № 9. P. 409. doi: 10.6878/S1004445371690235
  20. Pchelkin V.P. // J. Anal. Chem. 2020. V. 75. № 5. P. 615. doi: 10.1134/S1061934820050159
  21. Pchelkin V.P. // Current Chromatogr. 2022. V. 9. № 2. P. 1. DOI: 10.2174/ 2213240609666220120120113938
  22. Mahato P., Mandal K., Agrawai S., et al. // J. Phys. Chem. Lett. 2024. V. 15. № 2. P. 461. doi: 10.1021/acs.lett.3c03188
  23. Bhowmick S., Maisser A., Suleimanov Y.V., et al. // J. Phys. Chem. A. 2022. V. 128. № 37. P. 6376. doi: 10.1021/acs.jpca.2c02809
  24. Andryushechkin B.V., Pavlova T.V., Shevlyuga V.M. // Phys. Chem. Chem. Phys. 2024. V. 26. № 2. P. 1322. doi: 10.1039/D3CP04962K
  25. Yasumura S., Kato T., Toyao T., et al. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 8524. doi: 10.1039/d2cp04761f
  26. Gao H., Bi S., Chai J., et al. // J. Chrom. A. 2024. V. 1714. № 464579. P. 1. doi: 10.1016/j.chroma.2023.464579
  27. Arroyave J.M., Ambrusi R.E., Pronsato M.E., et al. // J. Phys. Chem. B. 2020. V. 124. № 12. P. 2425. doi: 10.1021/acs.jpcb.9b10430
  28. Bigi F., Cera G., Maggi R., et al. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10035. doi: 10.1021/acs.jpca.1c07253
  29. Jayalatharachchi V., MacLeod J., Lipton-Duffin J. // J. Phys. Chem. C. 2021. V. 125. № 26. P. 14326. doi: 10.1021/acs.jpcc.1c02581
  30. Krzykawska A., Szwed M., Ossowski J., Cyganik P. // J. Phys. Chem. C. 2018. V. 122. № 1. P. 919. doi: 10.1021/acs.jpcc.7b10806
  31. Du Z., Ding P., Tai X., et al. // Langmuir. 2018. V. 34. № 23. P. 6922. doi: 10.1021/acs.langmuir.8b00640
  32. Rathnakumar S., Bhaskar S., Sivaramakrishnan V., et al. // Anal. Chem. 2024. V. 96. № 10. P. 4005. DOI: 1021/acs.analchem.3c01441

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Sections of the hydrophobicity scale of lipid molecules HBᵢ

下载 (389KB)
3. Fig. 2. Nominal levels of the main (ψUns, black columns) parameter of oleic (Ole), linoleic (Lin) and α-linolenic (αLnn) acid residues, as well as the values ​​of the complementary (εUns, white columns) and summing (λUns, grey columns) parameters [17, 18] according to Ag⁺-RP TLC of rac-1,2-Ole₂Gro, rac-1,2-Lin₂Gro and rac-1,2-Lnn₂Gro [14], as well as Ag⁺-RP HPLC of phenethyl and phenacyl esters of these acids [11].

下载 (92KB)
4. Fig. 3. Nominal levels of the ψUns parameter (gray columns) and the λUns values ​​of arachidonic (AchΔ₄), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid residues found in phenethyl and phenacyl esters (white and black columns, respectively [17, 18]) based on Ag⁺-RP HPLC data [11].

下载 (112KB)

版权所有 © Russian Academy of Sciences, 2025