Dielectric Properties of Graphite Oxide Polymeric Composites Based on N-Vinylpirrolidone Copolymers with Different Topologies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dielectric properties of graphite oxide composite materials based on a biocompatible branched copolymer of N-vinylpyrrolidone with 1,6-hexanediol dimethacrylate and a cross-linked copolymer of N‑vinylpyrrolidone with triethylene glycol dimethacrylate are studied. High-frequency (9.8 GHz) and low-frequency (25 Hz–1 MHz) measurements of the complex permittivity and electrical conductivity of polymer composites are carried out and their dependences on the polymer matrix topology and formation conditions are analyzed. Copolymers and composites based on them are characterized by IR, UV, and visible spectroscopy, dynamic light scattering, and the surface morphology of nanocomposite polymer matrices is characterized by optical microscopy. It is shown that the proposed electrophysical approach makes it possible to additionally characterize polymer matrices with carbon nanofillers.

作者简介

G. Simbirtseva

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: sgvural@mail.ru
142432, Chernogolovka, Russia

C. Babenko

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: sgvural@mail.ru
142432, Chernogolovka, Russia

E. Perepelitsina

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: sgvural@mail.ru
142432, Chernogolovka, Russia

P. Komendant

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: sgvural@mail.ru
142432, Chernogolovka, Russia

S. Kurmaz

Institute of Problems of Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sgvural@mail.ru
142432, Chernogolovka, Russia

参考

  1. Chen Y., Li J., Li T. et al. // Carbon. 2021. V. 180. P. 163. https://doi.org/10.1016/j.carbon.2021.04.091
  2. Кулакова И.И., Лисичкин Г.В. // Журн. общ. химии. 2020. Т. 90. № 10. С. 1601. Kulakova I.I., Lisichkin G.V. // Russ. J. Gen. Chem. 2020. V. 90. № 10. P. 1921.https://doi.org/10.1134/S107036322010015110.1134/S1070363220100151https://doi.org/10.31857/S0044460X20100157
  3. Huang X., Leng T., Georgiou T. // Scient. Rep. 2018. 8: 43. https://doi.org/10.1038/s41598-017-16886-1
  4. Shareena T.PD., McShan D., Dasmahapatra A.K., Tchounwou P.B. // Nano-Micro Lett. 2018. 10: 53. https://doi.org/10.1007/s40820-018-0206-4
  5. Еремина Е.А., Каплин А.В., Елисеев А.А. и др. // Российские нанотехнологии. 2018. Т. 13. № 3–4. С. 49. Eremina E.A., Kaplin A.V., Eliseev A.A. et al. // Nanotechnol. Russ. 2018. V. 13. №. 3–4. P. 152. https://doi.org/10.1134/S1995078018020027
  6. Курмаз С.В., Фадеева Н.В., Кнерельман Е.И., Давыдова Г.И. // Высокомолек. соед. Б. 2018. Т. 60. № 2. С. 147. Kurmaz S.V, Fadeeva N.V., Knerel’man E.I., Davydova G.I. // Polymer Science. Ser. В. 2018. V. 60. № 2. P. 195.https://doi.org/10.1134/S156009041802003310.1134/S1560090418020033https://doi.org/10.7868/S2308113918020055
  7. Kurmaz S.V., Fadeeva N.V., Gorshkova A.I. et al. // Materials. 2021. V. 14. P. 6757. https://doi.org/10.3390/ma14226757
  8. Курмаз С.В., Фадеева Н.В., Кнерельман Е.И., Давыдова Г.И. // Журн. прикл. химии. 2018. Т. 91. № 1. С. 115. Kurmaz S.V., Fadeeva N.V., Knerel’man E.I., Davydova G.I. // Russ. J. Appl. Chem. 2018. V. 91. № 1. P. 105–112. https://doi.org/10.1134/S1070427218010172
  9. Wei C., Akinwolemiwa B., Yu L. et al. Polymer Composites with Functionalized Nanoparticles. Elsevier Inc., 2019. P. 211. https://doi.org/10.1016/C2017-0-00517-7
  10. Zhang Y., Zhang Q., Hou D., Zhang J. // Applied Surface Science. 2020. V. 504. 144152. https://doi.org/10.1016/j.apsusc.2019.144152
  11. Курмаз С.В., Пыряев А.Н. // Высокомолек. соед. Б. 2010. Т. 52. № 1. С. 107. Kurmaz S.V., Pyryaev A.N. // Polymer Sci. В. 2010. V. 52. № 1–2. P. 1. https://doi.org/10.1134/S156009041001001X
  12. Арбузов А.А., Мурадян В.Е., Тарасов Б.П. // Изв. АН. Сер. хим. 2013. № 9. С. 1962. Arbuzov A.A., Muradyan V.E., Tarasov B.P. // Russ. Chem. Bull. 2013. V. 62 № 9. P. 1962. https://doi.org/10.1007/s11172-013-0284-x
  13. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60. Simbirtseva G.V., Piven’ N.P., Babenko S.D. // Russ. J. Phys. Chem. В. 2020. V. 14. P. 980. https://doi.org/10.1134/S199079312006028710.1134/S1990793120060287https://doi.org/10.31857/S0207401X20120146
  14. Арбузов А.А., Мурадян В.Е., Тарасов Б.П. и др. // Журн. физ. химии. 2016. Т. 90. № 5. С. 663. Arbuzov A.A., Muradyan V.E., Tarasov B.P. et al. // Russ. J. Phys. Chem. A. 2016. V. 90. P. 907. https://doi.org/10.1134/S003602441605007110.1134/S0036024416050071https://doi.org/10.7868/S0044453716050071
  15. Kurmaz S.V., Fadeeva N.V., Ignat’ev V.M. et al. // Molecules. 2020. V. 25. P. 6015. https://doi.org/10.3390/molecules25246015
  16. Compton O.C., Cranford S.W., Putz K.W. et al. // ACS Nano. 2012. V. 6. № 3. P. 2008. https://doi.org/10.1021/nn202928w
  17. Soler-Crespo R.A., Gao W., Mao L. et al // ACS Nano. 2018. V. 12. № 6. P. 6089. https://doi.org/10.1021/acsnano.8b02373
  18. Zhang Y., Yang T., Jia Y. et al // Chem. Phys. Lett. 2018. V. 708 P. 177. https://doi.org/10.1016/j.cplett.2018.08.023
  19. Шабанов Н.C., Ахмедов А.К., Муслимов А.Э. и др. // Российские нанотехнологии. 2019. Т. 14. № 3–4. С. 17. Shabanov N.S., Akhmedov A.K., Muslimov A.E. et al. // Nanotechnologies in Russia. 2019. V. 14. № 3–4. P. 104.https://doi.org/10.1134/S199507801902012510.1134/S1995078019020125https://doi.org/10.21517/1992-7223-2019-3-4-17-20
  20. Alfonso M., Yuan J., Tardani F. et al. // J. Phys.: Mater. 2019. V. 2. 045002. https://doi.org/10.1088/2515-7639/ab2666

补充文件

附件文件
动作
1. JATS XML
2.

下载 (133KB)
3.

下载 (85KB)
4.

下载 (88KB)
5.

下载 (4MB)

版权所有 © Г.В. Симбирцева, С.Д. Бабенко, Е.О. Перепелицина, Р.И. Комендант, С.В. Курмаз, 2023