Calculating the Gibbs Energy of Solvation of Pyridine in Nonaqueous Solvents
- 作者: Kuz’mina I.A.1, Kovanova M.A.1, Perova S.O.1
-
隶属关系:
- Ivanovo State University of Chemistry and Technology
- 期: 卷 97, 编号 8 (2023)
- 页面: 1084-1086
- 栏目: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 26.02.2025
- ##submission.datePublished##: 01.08.2023
- URL: https://vestnik-pp.samgtu.ru/0044-4537/article/view/668672
- DOI: https://doi.org/10.31857/S0044453723080125
- EDN: https://elibrary.ru/QVEWGX
- ID: 668672
如何引用文章
详细
Gibbs energies of the solvation of pyridine (Py) in methanol, acetonitrile, and N,N-dimethylformamide are calculated via quantum chemical modeling. Contributions from universal and specific types of interaction between the Py and solvent molecules to the change in the Gibbs energies of solvation of the aromatic heterocycle are determined when alcohol is replaced with aprotic solvents.
作者简介
I. Kuz’mina
Ivanovo State University of Chemistry and Technology
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
M. Kovanova
Ivanovo State University of Chemistry and Technology
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
S. Perova
Ivanovo State University of Chemistry and Technology
编辑信件的主要联系方式.
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
参考
- Шарнин В.А., Усачева Т.Р., Кузьмина И.А. и др. Комплексообразование в неводных средах: Сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
- Pathania S., Rawal R.K. // Eur. J. Med. Chem. 2018. V. 157. P. 503. https://doi.org/10.1016/j.ejmech.2018.08.023
- Матис М.Е., Шмырова А.А., Малых У.В. и др. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. № 10. С. 132. https://doi.org/10.6060/ivkkt.20216410.6489
- Pal S. Pyridine: A useful ligand in transition metal complexes // Pyridine. 2018. P. 57–74. https://doi.org/10.5772/intechopen.76986
- Nikolaev A., Legault C.Y., Minhao Z., Orellana A. // Org. Lett. 2018. V. 20. № 3. P. 796. https://doi.org/10.1021/acs.orglett.7b03938
- Wong V.C.-H., Po C., Leung S.Y.-L. et al. // J. Am. Chem. Soc. 2018. V. 140. № 2. P. 657. https://doi.org/10.1021/jacs.7b09770
- Liske A., Wallbaum L., Hölzel T. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5433. https://doi.org/10.1021/acs.inorgchem.9b00337
- Gould N.S., Li S., Cho H.J. et al. // Nat. Commun. 2020. V. 11. P. 1060. https://doi.org/10.1038/s41467-020-14860-6
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.03 – Gaussian, Inc., Pittsburgh PA, 2003.
- Becke A.D. // J. Phys. Rev. A: At., Mol., Opt. Phys. 1988. V. 38. № 6. P. 3098.
- Stephens P.J., Devlin F.J., Chablowski C.F., Frisch M.J. // J. Chem. Phys. 1994. V. 98. № 45. P. 11623.
- Hertwig R.H., Koch W. // J. Chem. Phys. Lett. 1997. V. 268. № 5. P. 345.
- Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007.
- Zhurko G.A., Zhurko D.A. ChemCraft version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html
- Foresman J.B., Keith T.A., Wiberg K.B. et al. // J. Chem. Phys. 1996. V. 100. № 40. P. 16098.
- Kuz’mina I.A., Kovanova M.A. // J. Mol. Liq. 2022. V. 349. P. 118112. https://doi.org/10.1016/j.molliq.2021.118112
- Мошорин Г.В., Репкин Г.И., Шарнин В.А. // Журн. физ. химии. 2010. Т. 84. № 4. С. 618.
- Фиалков Ю.А. Не только в воде. Л.: Химия, 1989. 88 с.
