Simulator for testing methods of generating data transmission of analog signals in the form of a sequence of command codes in communication channels

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The necessity of developing a simulator for testing the operation of control command code sequence generation units, monitoring in various switching systems and transmission of measured environmental parameters and their processing after transmission via an optical channel is substantiated. The simulator design is presented using an air-optical communication channel for transmitting information in the form of a command code sequence. The features of using a command code sequence when transmitting analog signals in an optical communication channel are established. The validity of using the proposed method for generating analog optical signals for transmitting them over long distances is confirmed.

Sobre autores

B. Reznikov

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Bolshevikov Srt., 22, Saint-Petersburg, 193232

T. Kotov

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Bolshevikov Srt., 22, Saint-Petersburg, 193232

S. Provodin

Peter the Great Saint Petersburg Polytechnic University

Polytehnichskaya Str., 29, Saint-Petersburg, 195251

V. Davydov

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications; Peter the Great Saint Petersburg Polytechnic University

Email: davydov_vadim66@mail.ru
Bolshevikov Srt., 22, Saint-Petersburg, 193232; Polytehnichskaya Str., 29, Saint-Petersburg, 195251

Bibliografia

  1. Лукиянов А.С., Подстригаев А.С. // Успехи современ. радиоэлектрон. 2024. Т. 78. № 3. С. 13.
  2. Семенов В.В., Никифоров Н.Ф., Ермак С.В., Давыдов В.В. // РЭ. 1991. Т. 35. № 10. С. 2179.
  3. Подстригаев А.С., Смоляков А.В., Калинин Д.А. // Успехи современ. радиоэлектрон. 2023. Т. 77. № 5. С. 20.
  4. Kuzmin M.S., Rogov S.A. // Computer Optics. 2019. V. 43. № 3. Р. 391.
  5. Podstrigaev A.S., Lukiyanov A.S., Smolyakov A.V. et. al. // J. Phys.: Conf. Ser. 2019. V. 1368. № 2. P. 022027.
  6. Dmitriev P.S., Kovalev A.V., Viktorov E.A. et. al. // Optics Lett. 2020. V. 45. № 22. P. 6150.
  7. Reznikov B.K., Stepanenkov G.V., Logvinova E.A. et. al. // St. Petersburg Polytechnic Univ. J. Physics and Mathematics. 2023. Т. 16. № 3.2. С. 143.
  8. Isaenko D., Rodin S., Stepanenkov G. et. al. // IEEE Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2022. Saint-Petersburg, 2022. V. 2022. P. 316.
  9. Davydov V., Reznikov B., Dudkin V. // Energies. 2023. Т. 16. № 3. С. 1040.
  10. Borodkin A.I., Kovalev A.V., Verschelde A. et. al. // IEEE Photonics Technology Lett. 2022. V. 34. № 18. P. 989.
  11. Podstrigaev A.S., Lukiyanov A.S., Smolyakov A.V. et. al. // J. Phys.: Conf. Ser. 2019. V. 1410. № 1. P. 012155.
  12. Davydov R., Antonov V., Angelina M. // IEEE Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2019. Saint-Petersburg, 2019. V. 8906791. P. 42.
  13. Petrov A.A., Shabanov V.E., Zalyotov D.V. et. al. // IEEE Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2018. Saint-Petersburg, 2018. V. 8564389. P. 52.
  14. Подстригаев А.С. // РЭ. 2022. Т. 67. № 4. С. 369.
  15. Петров А.А., Залетов Д.В., Давыдов В.В., Шаповалов Д.В. // РЭ. 2022. Т. 66. № 3. С. 285.
  16. Чан Х.Н., Подстригаев А.С., Нгуен Ч.Н., Иконенко Д.А. // Успехи современ. радиоэлектрон. 2023. Т. 77. № 10. С. 70.
  17. Davydov R., Nagornaya A. // IEEE Int. Conf. on Electrical Engineering and Photonics, EExPolytech 2020. Saint-Petersburg, 2020. V. 9243977. P. 145.
  18. Петров А.А., Давыдов В.В., Гребенникова Н.М. // РЭ. 2018. Т. 63. № 11. С. 1159.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025