Dispersion and polarization characteristics of waveguide modes of exchange spin waves in epitaxial YIG films

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The properties of exchange spin waves (ESW) in epitaxial films of yttrium iron garnet (YIG) are investigated in this paper. A comprehensive analysis of the peculiarities of excitation, propagation, and interaction of ESW is carried out, taking into account their anisotropic properties. A methodology for calculating the dispersion and energy characteristics of waveguide modes of ESW for various directions of wave propagation in tangentially magnetized YIG films is proposed. It is established that the presence of both elliptical and linear polarization of precession waves leads to the deformation of the trajectory of the magnetization precession vector and a change in the orientation of the symmetry axes of the elliptical trajectory. Good agreement between the calculated and measured characteristics of ESW has been experimentally confirmed. The obtained results allow for the creation of new types of functional devices for information transmission, storage, and processing based on short-wavelength exchange spin waves.

Texto integral

Acesso é fechado

Sobre autores

A. Ptashenko

Saratov National Research State University named after N.G. Chernyshevsky

Autor responsável pela correspondência
Email: andrey.po3@mail.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

V. Tikhonov

Saratov National Research State University named after N.G. Chernyshevsky

Email: andrey.po3@mail.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

A. Sadovnikov

Saratov National Research State University named after N.G. Chernyshevsky

Email: andrey.po3@mail.ru
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

Bibliografia

  1. Wolf S.A., Awschalom D.D., Buhrman R.A. et al. // Science. 2001. V. 294. № 5546. P. 1488.
  2. Zutic I., Fabian J., Sarma S.D. // Rev. Mod. Phys. 2004. V. 76. № 2. P. 323.
  3. Bader S.D., Parkin S.S.P. // Annual Rev. Cond. Matt. Physi. 2010. V. 1. P. 71.
  4. Wolf S.A., Chtchelkanova A.Y., Treger D.M. // IBM J. Research and Development. 2006. V. 50. № 1. P. 101.
  5. Fert A. // Rev. Mod. Phys. 2008. V. 80. № 4. P. 1517.
  6. Ohno H. // Nature Materi. 2010. V. 9. № 9. P. 952.
  7. Hirohata A., Yamada K., Nakatani Y. et al. // J. Magn. Magn. Mater. V. 509. Article No. 166711.
  8. Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. Article No. 264001.
  9. Hикитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1099.
  10. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2024. V. 33. № 41. Article No. 413001.
  11. Pirro P., Vasyuchka V.I., Serga A.A., Hillebrands B. // Nature Rev. Mater. 2021. V. 6. № 12. P. 1114.
  12. Aхиезер А.И., Барьяхтар В.Г., Каганов М.И. // Успехи физ. наук. 1960. Т. 71. № 4. С. 533. Т. 72. № 1. С. 3.
  13. Odintsov S.A., Sheshukova S.E., Nikitov S.A., Sadovnikov A.V. // Phys. Rev. Appl. 2024. V. 22. № 1. P. 014042.
  14. Suhl H. // J. Phys. Chem. Sol. 1957. V. 1. № 3–4. P. 209.
  15. Martyshkin A.A., Sheshukova S.E., Sadovnikov A.V. // Appl. Phys. Lett. 2024. V. 124. № 9. P. 092413. https://doi.org/10.1063/5.0190510
  16. Tikhonov V.V., Ptashenko A.S., Sadovnikov A.V. // J. Magn. Magn. Mater. 2024. V. 605. Article No. 172331. https://doi.org/10.1016/j.jmmm.2024.172331
  17. De Wames R.E., Wolfram T. // J. Appl. Phys. 1970. V. 41. № 3. P. 987.
  18. Adam J.D., O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1979. V. 50. № B3. P. 2446.
  19. Tikhonov V.V., Lock E.H., Ptashenko A.S., Sadovnikov A.V. // J. Magn. Magn. Mater. 2024. V. 587. Article No. 171251.
  20. Шевцов В.С., Амеличев В.В., Васильев Д.В. и др. // Изв. РАН. Сер. Физ. 2022. V. 86. № 9. С. 1247.
  21. Барабанов А.Л. Симметрии и спин-угловые корреляции в реакциях и распадах. М.: Физматлит, 2022.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dispersion dependences of waveguide modes of the OSW propagating: in an arbitrary direction of the film (a), in the direction of the applied field (b). The dotted lines show the dispersion laws without taking into account the inhomogeneous exchange. The numbers on the graphs indicate the numbers of the waveguide modes.

Baixar (210KB)
3. Fig. 2. Dispersion of the precession wave in the doped layer of the YIG film.

Baixar (100KB)
4. Fig. 3. Distribution of the density of transverse (a) and longitudinal (b) components of the exchange power flows across the thickness of the YIG film. The numbers on the graphs indicate the numbers of the waveguide modes.

Baixar (99KB)
5. Fig. 4. Deformation of the precession trajectory of the magnetization vector depending on the wave number of the first mode of the OSW running in the direction orthogonal to the magnetization field: 1 – at kx = 0; 2 – at kx = 1.62.104 cm–1 at point ; 3 – at kx = 8.79.104 cm–1 at point ; 4 – at kx = 106 cm–1.

Baixar (117KB)
6. Fig. 5. Amplitude-frequency characteristic of the reflected microwave signal of the experimental model: (a) frequency response of both microwave frequency ranges, (b) low-frequency fragment of the frequency response of the reflected microwave signal.

Baixar (97KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025