A Method for Detecting Nanometer Length Oscillations in Fiber-Optic Sensors Using a Tracking Tandem Low-Coherent Interferometer

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for detecting changes in the length of an optical cavity is proposed for fiber-optic sensors based on the Fabry–Perot interferometer scheme. The possibility of detecting oscillations of the resonator length at the subnanometer level in the frequency band 1.5–300 kHz is shown. The sensitivity was 0.3 nm in standard deviation. The proposed scheme makes it possible to reliably distinguish high-frequency oscillations against the background of slow drifts of the sensor length caused by temperature fluctuations or deformations.

作者简介

P. Volkov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia

A. Goryunov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia

A. Luk’yanov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia

D. Semikov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia

A. Tertyshnik

Institute of Physics of Microstructures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia

参考

  1. Zhang Z., Liao C., Tang J., Bai Z., Guo K., Hou M., He J., Wang Y., Liu S., Zhang F., Wang Y. // J. Light. Technol. 2017. V. 35. № 18. P. 4067. https://doi.org/10.1109/JLT.2017.2710210
  2. Ma J., Jin W., Xuan H., Wang C., Ho H.L. // Opt. Lett. 2014. V. 39. № 16. P. 4769. https://doi.org/10.1364/OL.39.004769
  3. Liu Q., Jing Z., Liu Y., Li A., Xia Z., Peng W. // Opt. Express. 2019. V. 27. № 26. P. 38191. https://doi.org/10.1364/OE.381197
  4. Yu H., Luo Z., Zheng Y., Ma J., Li Z., Jiang X. // J. Light. Technol. 2019. V. 37. № 10. P. 2261. https://doi.org/10.1109/JLT.2019.2901845
  5. Tosi D. // J. Light. Technol. 2016. V. 34. № 15. P. 3622. https://doi.org/10.1109/JLT.2016.2575041
  6. Yang Y., Wang Y., and Chen K. // Opt. Express. 2021. V. 29. № 5. P. 6768. https://doi.org/10.1364/OE.415750
  7. Digonnet M.J.F., Akkaya O.C., Kino G.S., Solgaard O. // Imaging Applied Optics Technical Digest. 2012. Stu3F. 1. https://doi.org/10.1364/SENSORS.2012.Stu3F.1
  8. Zhou C., Letcher S.V., Shukla A. // The J. Acoust. Soc. Am. 1995. V. 98. № 2. P. 1042. https://doi.org/10.1121/1.413669
  9. Akkaya O.C., Akkaya O., Digonnet M.J.F., Kino G.S., Solgaard O. // J. Microelectromechanical Syst. 2012. V. 21. № 6. P. 1347. https://doi.org/10.1109/JMEMS.2012.2196494
  10. Kilic O., Digonnet M., Kino G., Solgaard O. // Meas. Sci. Technol. 2007. V. 18. № 10. P. 3049. https://doi.org/10.1088/0957-0233/18/10/S01
  11. Dandridge A., Tveten A., Giallorenzi T. // IEEE J. Quantum Electron. 1982. V. 18. № 10. P. 1647.
  12. Wang L., Zhang M., Mao X., Liao Y. // Interferometry XIII: Techniques and Analysis. 2006. V. 62921E. https://doi.org/10.1117/12.678455
  13. Chen K., Yu Z., Gong Z., Yu Q. // Opt. Lett. 2018. V. 43. № 20. P. 5038. https://doi.org/10.1364/OL.43.005038
  14. Volkov P., Semikov D., Goryunov A., Luk’yanov A., Tertyshnik A., Vopilkin E., Krayev S. // Sensors Actuators A: Phys. 2020. V. 316. P. 112385. https://doi.org/10.1016/j.sna.2020.112385
  15. Volkov P., Goryunov A., Luk’yanov A., Tertyshnik A., Baidakova N., Luk’yanov I. // Optik. 2013. V. 124. № 15. P. 1982. https://doi.org/10.1016/j.ijleo.2012.06.043
  16. Volkov P., Lukyanov A., Goryunov A., Semikov D., Vopilkin E., Kraev S., Okhapkin A., Tertyshnik A., Arkhipova E. // Sensors. 2021. V. 21. № 21. P. 7343. https://doi.org/10.3390/s21217343

补充文件

附件文件
动作
1. JATS XML
2.

下载 (44KB)
3.

下载 (65KB)
4.

下载 (84KB)
5.

下载 (78KB)

版权所有 © П.В. Волков, А.В. Горюнов, А.Ю. Лукьянов, Д.А. Семиков, А.Д. Тертышник, 2023